Paradise Power Systems Ltd

Project Name: 9th June 2020

Client: Olivia Callan

Address: Newton Road Isles of Scilly Isles of Scilly, TR23 OPR

Date Created: 9th June 2020

Designer: Jason Hicks Jason Hicks

Roof Layout

Roof 1

Roof 2

Roof 3

Component list

Item Quantity
Q Cells 340W All Black Split Cell Mono solar panel 11
SolarEdge 3680 HD Wave - Screenless SETAPP inverter 1
$-$ Emlite ECA2 Single Phase Meter1
$=1$: Label sheet 1
Rail bolt for fastensol rails 10
SolarEdge Wattnode Modbus Meter with 100A CT Clamp 1
SolarEdge Wifi Antenna for SETAPP inverters 1
d AC isolator - KN Newbury 20A 4-pole 22) SolarEdge Optimiser P37011
Pair of MC4 connectors 2
5 50 m reel of 4 mm 2 solar cable 1
r. Metasole flat channel (portrait) 28
I Renusol end clamp (black) 12
T Renusol mid clamp (black) 16

Inverter Compatibility

SolarEdge 3680 HD Wave - Screenless SETAPP

Panels	Inverter	
PV power:	3740 W	Rated AC output

The inverter rated output is 2 percent less than the maximum power of the array.
However, a small amount of underdimensioning is normal, and there will be little loss of power.

String 1: 11 Q Cells 340W All Black Split Cell Mono solar panels with P370 optimiser

Panels	Optimiser PV power:		
Open circuit voltage at $-10^{\circ} \mathrm{C}$	46 V	Rated input power	370 W
$\mathrm{~V}_{\text {mpp }}$ at $40^{\circ} \mathrm{C}$:	32 V	$\mathrm{~V}_{\text {mpp }}$ lower limit	60 V
$\mathrm{~V}_{\text {mpp }}$ at $-10^{\circ} \mathrm{C}$:	38 V	$\mathrm{~V}_{\text {mpp }}$ upper limit	8.00 V
$\mathrm{I}_{\text {mpp }}$ at $25^{\circ} \mathrm{C}$:	10.07 A	Max DC input current	60 V
			11 A
String	3740 W	Max string power	5250 W
Total string power	$\mathbf{1 1}$	Permitted string lengths	$8 / 25$

The maximum expected current from the panel is 10.58 A , which is suitable for this optimiser
The maximum expected power output of the panel is 340 W , which is suitable for this optimiser

The maximum open circuit voltage of the panel is 46 V , which is suitable for this optimiser
The maximum power point voltage of the panel is 33.94 V , which is within the correct range for this optimiser

The string power output is less than the maximum input for this inverter.
This string contains 11 optimisers.

Electrical

SolarEdge 3680 HD Wave - Screenless SETAPP

$A C$ isolator

A AC isolator - KN Newbury 20A 4-pole has been specified for this inverter
The rated isolator current (20A) is greater than the rated inverter current (16A)
The isolator is suitable for use on a single phase inverter.

Input 1
DC isolator
This inverter contains an integrated DC Isolator.
Cable
10 m of 4 mm 2 solar cable has been specified
Voltage drop at maximum power point at $40^{\circ} \mathrm{C}$ will be around $0.85 \mathrm{~V}(0.22$ percent)

Schematic diagram

Annual Output Performance Estimate

Site Details	
Client	Olivia Callan
Address	Newton Road Isles of Scilly Isles of Scilly
	TR23 0PR
Postcode zone	Zone 4

The sunpath diagram shows the arcs of the sky that the sun passes through at different times of the day and year as yellow blocks. The shaded area indicates the horizon as seen from the location of the solar array. Where objects on the horizon are within 10 m of the array, an added semi-circle is drawn to represent the increased shading. Blocks of the sky that are shaded by objects on the horizon are coloured red, and a shading factor is calculated from the number of red blocks

The performance of the solar array is calculated by multiplying the size of the array (kWp) by the shading factor (sf) and a site correction factor (kk), taken from tables which take account of the geographical location, orientation and inclination of the array

Inverter 1: SolarEdge 3680 HD Wave - Screenless SETAPP

String 1 - shading group 1

	A: Installation da	
	Installed capacity	3.740 kWp
	Orientation	-90 ${ }^{\circ}$
	Inclination	20°
	B: Calculations	
	kWh/kWp (kk)	891
	Shade factor (sf)	1.00
	Estimated output	3332 kWh

The performance of solar PV systems is impossible to predict with certainty due to the variability in the amount of solar radiation (sunlight) from location to location and from year to year. This estimate is based upon the standard MCS procedure and is given as guidance only. It should not be considered a guarantee of performance.

The shade assessment has been undertaken using the standard MCS procedure. It is estimated that this method will yield results within 10% of the actual annual energy yield for most systems.

Structural calculations

Roof 1

Weight loading calculation

The total weight of the solar panels and mounting components is 215.76 kg . Assuming his is spread evenly over the area that the solar panels cover ($17.92 \mathrm{~m}^{2}$),
the loading imposed by the solar PV array is $12 \mathrm{~kg} / \mathrm{m}^{2}$, or 0.12
$\mathrm{kN} / \mathrm{m}^{2}$.
The existing dead load on the roof from the roof covering is $35 \mathrm{~kg} / \mathrm{m}^{2}$, or $0.34 \mathrm{kN} / \mathrm{m}^{2}$.
If we factor in an imposed load of $\$\{$ results.imposedLoad $\} \mathrm{kN} / \mathrm{m}^{2}$, then the percentage increase in loading due to the installation of the solar array becomes
$100 \times((0.12+0.34+0.75) /(0.34+0.75)-1)=11 \%$

For a traditional cut roof with rafters and purlins we recommend also using our rafter calculator to check the load-bearing capacity of the rafters. Even if the increase in loading is more than 15% the rafters may well be able to take the additional weight.
An increase of less than 15% in the load imposed on a roof is not considered to be a significant change (The Building Regulations 2000, Approved Document A).
Please note that this method does not calculate the strength of the roof, and if a roof was badly constructed, does not meet existing building regulations, or is in poor condition then it may still not be appropriate to install an array.

Roof 2

Weight loading calculation

The total weight of the solar panels and mounting components is 20.14 kg . Assuming this is spread evenly over the area that the solar panels cover $\left(1.79 \mathrm{~m}^{2}\right)$,
the loading imposed by the solar PV array is $11.2 \mathrm{~kg} / \mathrm{m}^{2}$, or 0.11
$\mathrm{kN} / \mathrm{m}^{2}$.
The existing dead load on the roof from the roof covering is $12 \mathrm{~kg} / \mathrm{m}^{2}$, or $0.12 \mathrm{kN} / \mathrm{m}^{2}$.

If we factor in an imposed load of $\$\{r e s u l t s . i m p o s e d L o a d\} ~ k N / m^{2}$, then the percentage increase in loading due to the installation of the solar array becomes
$100 \times((0.11+0.12+0.75) /(0.12+0.75)-1)=12.6 \%$

For a traditional cut roof with rafters and purlins we recommend also using our rafter calculator to check the load-bearing capacity of the rafters. Even if the increase in loading is more than 15% the rafters may well be able to take the additional weight.

An increase of less than 15% in the load imposed on a roof is not considered to be a significant change (The Building Regulations 2000, Approved Document A).

Please note that this method does not calculate the strength of the roof, and if a roof was badly constructed, does not meet existing building regulations, or is in poor condition then it may still not be appropriate to install an array.

Roof 3

Weight loading calculation

The total weight of the solar panels and mounting components is 20.14 kg . Assuming this is spread evenly over the area that the solar panels cover (1.79
m^{2}), the loading imposed by the solar PV array is 11.2
$\mathrm{kg} / \mathrm{m}^{2}$, or $0.11 \mathrm{kN} / \mathrm{m}^{2}$
The existing dead load on the roof from the roof covering is $12 \mathrm{~kg} / \mathrm{m}^{2}$, or $0.12 \mathrm{kN} / \mathrm{m}^{2}$.

If we factor in an imposed load of $\$\{$ results.imposedLoad $\} \mathrm{kN} / \mathrm{m}^{2}$, then the percentage increase in loading due to the installation of the solar array becomes

$$
100 \times((0.11+0.12+0.75) /(0.12+0.75)-1)=12.6 \%
$$

You should note that this method does not actually check the load capacity of the roof it merely checks that you are not increasing the loading significantly. Calculating roof strength of trussed rafter roofs is a complicated task, and if you are unsure of the strength of the roof then it would be wise to take the advice of a structural engineer.

An increase of less than 15% in the load imposed on a roof is not considered to be a significant change (The Building Regulations 2000, Approved Document A).

Please note that this method does not calculate the strength of the roof, and if a roof was badly constructed, does not meet existing building regulations, or is in poor condition then it may still not be appropriate to install an array.

