

RECEIVED By Liv Rickman at 1:27 pm, May 20, 2024

GROUND INVESTIGATION

Factual Report

Carn Thomas, IOS

24 January 2020

Wheal Jane Consultancy

Old Mine Offices, Wheal Jane, Baldhu, Truro, Cornwall, TR3 6EE

01872 560200

www.wheal-jane-consultancy.co.uk

consultancy@wheal-jane.co.uk

SI19937A

DOCUMENT CONTROL SHEET

Client	Homes England c/o Campbell Reith			
Engineer	Campbell Reith			
Project Title	Carn Thomas, IOS			
Document Title	Ground Investigation Factual Report			
Document No.	SI19937A			

Date	Status	Revision	Prepared By	Approved By
24 January 2020	Final	А	Bryony Halliday	Dan Jobson

CONTENTS

C O N 1		S	
1	1.1	uction Instruction	
	1.2	Scope and Objectives	.3
	1.3	Limitations	.3
2	THE SI	E	4
	2.1	Site Location and Layout	
	2.2	Surrounding area	. 4
	2.3	Proposed Development	. 4
3	Site In	vestigation	5
-	3.1	Site Works	
	3.2	Trial Pitting	. 5
	3.3	Geotechnical Sampling and Testing	. 5
	3.4	Chemical Sampling and Testing	. 6
4 5	Refere NOTES	ence list	

FIGURES

Figure 2.1:	Site Location Plan
Figure 2.2:	Current Site Layout
Figure 3.1:	Exploratory Hole Location Plan

APPENDICES

- Appendix A: Trial Pit Logs
- Appendix B: Trial Pit Photographs
- Appendix C: Geotechnical Laboratory Testing Results
- Appendix D: Chemical Laboratory Testing Results

TABLES

Table 3.1:Site Works

1 INTRODUCTION

1.1 Instruction

- 1.1.1 Wheal Jane Consultancy (WJC) was commissioned by Homes England c/o Campbell Reith to undertake a Ground Investigation at a site known as Carn Thomas, IOS.
- 1.1.2 This report has been prepared by Wheal Jane Consultancy solely for the benefit of the Client. It shall not be relied upon or transferred to any third party without the prior written authorisation of WJC.

1.2 **Scope and Objectives**

- 1.2.1 The general specification for the works was provided by Campbell Reith.
- 1.2.2 This report represents full factual records of the work carried out, the ground conditions encountered in the exploratory holes, the in-situ and laboratory results and the results of ground gas monitoring.
- 1.2.3 This assessment has been undertaken with guidance from B\$10175:2011 and Environment Agency report CLR11, and as such represents a Ground Investigation.

1.3 Limitations

- 1.3.1 Field work consisted of discrete sampling across the site, to assess the character and degree of contamination. Conditions of the ground at locations not included within the investigation may be different from the tested locations.
- 1.3.2 This report considers site conditions at the time of the ground investigation, but ground conditions may change with time. If future work discovers ground conditions that vary significantly from the findings available in this report, the conclusions should be reviewed in the context of the new information.
- 1.3.3 Findings were assessed in the context of standards and methodology current at the time of reporting.
- 1.3.4 The findings and conclusions in this report are based upon information derived from a variety of sources. WJC cannot accept liability for the accuracy or completeness of any information derived from third party sources.

Ground Investigation Factual Report

2 THE SITE

2.1 Site Location and Layout

- 2.1.1 The site is located on St Mary's, Isles of Scilly, approximately 0.2km north west of the town centre of Hugh Town. The site is approximately centred on National Grid Reference SV 90680 10660.
- 2.1.2 The site is irregular in shape and covers an area of approximately 0.62ha.
- 2.1.3 A site location plan (SLP) is contained in Figure 2.1, to the rear of the report.
- 2.1.4 The current site plan is contained in Figure 2.2, to the rear of the report.

2.2 Surrounding area

Direction	Land Use
North	Road, Residential
East	Residential
South	Residential
West	Residential

2.3 **Proposed Development**

2.3.1 The development proposals are as-yet unclear.

3 SITE INVESTIGATION

3.1 Site Works

- 3.1.1 An intrusive site investigation was conducted on Tuesday 10th December 2019. The investigation was overseen by a geoenvironmental engineer from Wheal Jane Consultancy.
- 3.1.2 The following table summarises the intrusive investigation techniques employed during the site investigation;

 Table 3.1: Site Works

Exploratory Hole Type	Exploratory Hole ID	Hole Depths (mBGL)	Comments
Trial Pit	TPO1 – TPO9	0.40 - 3.30	Undertaken for site coverage across the terraced areas.

3.1.3 A plan showing the location of the exploratory holes is provided as Figure 3.1.

3.2 Trial Pitting

- 3.2.1 Nine (9 No.) Trial Pits, designated TP01 TP09 inclusive were advanced to depths of 0.40m to 3.30m using a Mini Digger on the 10th December 2019. A larger 8 tonne excavator was employed for TP09. Representative soil samples were taken at regular intervals for geotechnical and environmental analysis and logged on site by a suitably qualified geoenvironmental engineer.
- 3.2.2 The locations of all exploratory holes can be seen on the exploratory hole location plan, contained as Figure 3.1.
- 3.2.3 All trial pits were backfilled with arisings upon completion.
- 3.2.4 Trial pit logs are included as Appendix A.
- 3.2.5 Trial Pit photographs are included as Appendix B.

3.3 Geotechnical Sampling and Testing

- 3.3.1 Samples were dispatched to an accredited geotechnical laboratory in order to classify the geotechnical properties of the soils. The following tests were scheduled:
 - Moisture Content
 - Atterberg Limits (Scheduled however, samples were not suitable for full test only liquid limits attained)
 - Particle Size Distribution

- Particle Density
- pH & Water-Soluble Sulphate
- 3.3.2 All testing was carried out in accordance with the procedures set out in BS EN ISO/IEC 17025:2005.
- 3.3.3 All samples were tested by a UKAS accredited laboratory.
- 3.3.4 The results are included as Appendix C.

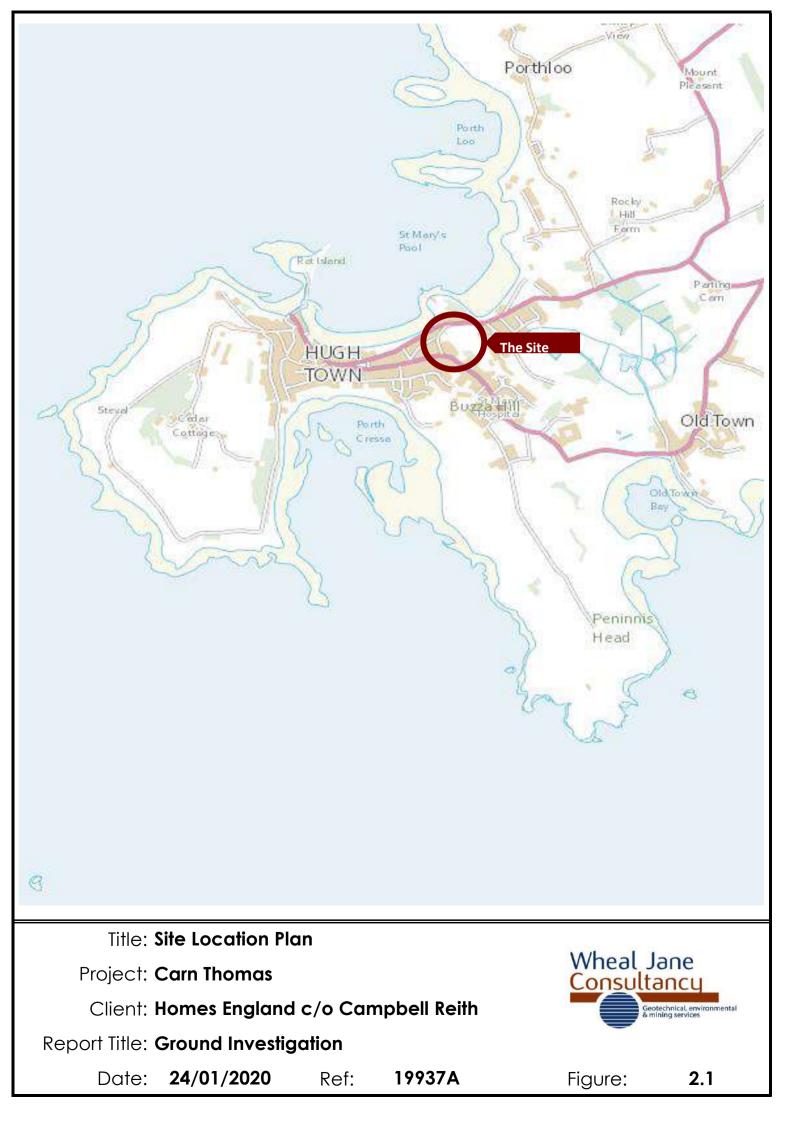
3.4 Chemical Sampling and Testing

- 3.4.1 All retrieved soil samples were logged in accordance with BS5930;2015 and BS EN ISO 14689. Collection of media for environmental testing was obtained, stored in plastic tubs and glass jars and kept within a temperature controlled cool box before being dispatched for testing.
- 3.4.2 Sampling was specified by the Engineer.
- 3.4.3 The following potential contaminants were tested for in selected samples:
 - WJC Screen Suite
 - Heavy Metals (As, Ba, Cd, CrIII, CrVI, Cu, Hg, Mn, Ni, Pb, Sb, Se, V, Zn)
 - o Organic Matter
 - o Cyanide
 - o Total PAH
 - o Total TPH
 - о рН
 - o Sulphate
 - Full WAC Solid State
 - Asbestos ID
- 3.4.4 All samples were tested by a UKAS and MCERT accredited laboratory.
- 3.4.5 The results are included as Appendix D.

4 **REFERENCE LIST**

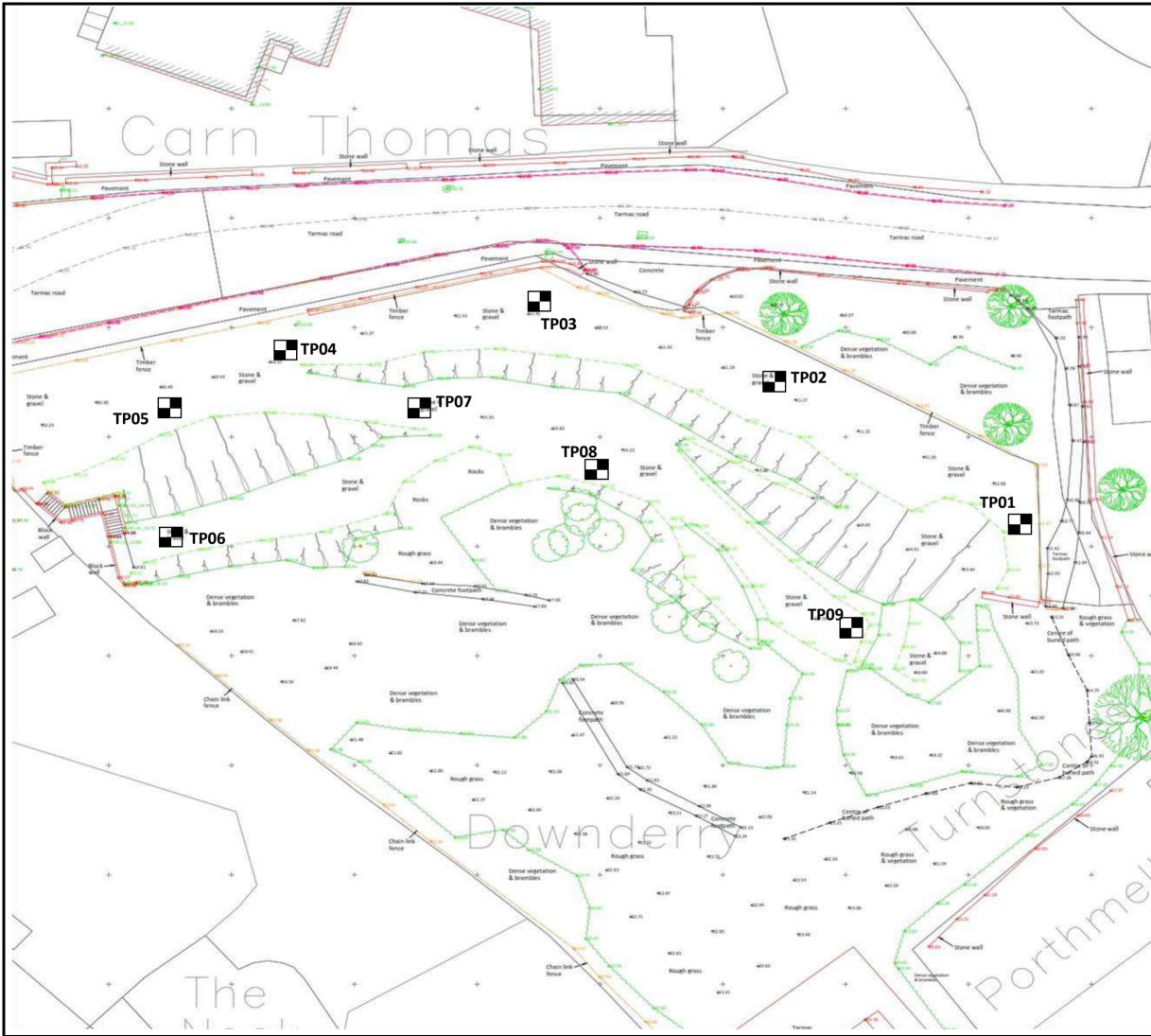
- 4.1.1 BSI (2011) BS 10175:2011 Investigation of Potentially Contaminated Sites Code of Practice. London, British Standards Institution
- 4.1.2 BSI (2015) BS5930:2015. Code of Practice for Site Investigations. London, British Standards Institution
- 4.1.3 British Research Establishment (BRE) (2005) Special Digest 1 Concrete in Aggressive Ground. 3rd edn. Watford, BRE
- 4.1.4 Chartered Institute of Environmental Health (CIEH) and Contaminated Land: Applications in Real Environments (CL:AIRE) (2008) Guidance on Comparing Soil Contamination Data with a Critical Concentration. London, CIEH
- 4.1.5 CIRIA (2001) CIRIA C552 Contaminated land risk assessment: A guide to good practice. London, CIRIA
- 4.1.6 CIRIA (2007) CIRIA C665 Assessing Risks Posed by Hazardous Ground Gases to Buildings. London, CIRIA
- 4.1.7 Contaminated Land: Applications in Real Environments (CL:AIRE), Association of Geotechnical and Geo-environmental Specialists (AGS) and The Environmental Industries Commission (EIC) (2010) Soil Generic Assessment Criteria for Human Health Risk Assessment. London, CL:AIRE
- 4.1.8 Contaminated Land: Applications in Real Environments (CL:AIRE) (2012) A Pragmatic Approach to Ground Gas Risk Assessment. Research Bulletin 17
- 4.1.9 Contaminated Land: Applications in Real Environments (CL:AIRE) (2016) CAR SOIL: Control of Asbestos Regulations 2012. Interpretation for Managing and Working with Asbestos in Soil and Construction and Demolition Materials.
- 4.1.10 Environment Agency (2004) Contaminated Land Report 11 Model Procedures for the Management of Land Contamination. Bristol, Environment Agency
- 4.1.11 Environment Agency (2009) Updated Technical Background to the CLEA Model. Science Report SC050021/SR3. Bristol: Environment Agency
- 4.1.12 Environment Agency (2009) Human Health Toxicological Assessment of Contaminants in Soil. Science Report SC050021/SR2. Bristol: Environment Agency
- 4.1.13 Great Britain. Environmental Protection Act (1990). London, The Stationery Office
- 4.1.14 Great Britain. Water Act (2003) London, The Stationery Office
- 4.1.15 Great Britain. Environmental Permitting Regulations (2007). London, The Stationery Office
- 4.1.16 Great Britain. Environmental Damage (Prevention and Remediation) Regulations (2009). London, The Stationery Office
- 4.1.17 Great Britain. The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015. London, The Stationery Office
- 4.1.18 National House Building Council (NHBC), Environment Agency and Chartered Institute of Environmental Health (CIEH) (2008) Research & Development Publication 66: Guidance for the Safe Development of Housing on Land Affected by Contamination. Amersham, NHBC
- 4.1.19 Royal Institution of Chartered Surveyors (RICS) (2012) Japanese Knotweed and Residential Property. Coventry, RICS

Ground Investigation Factual Report



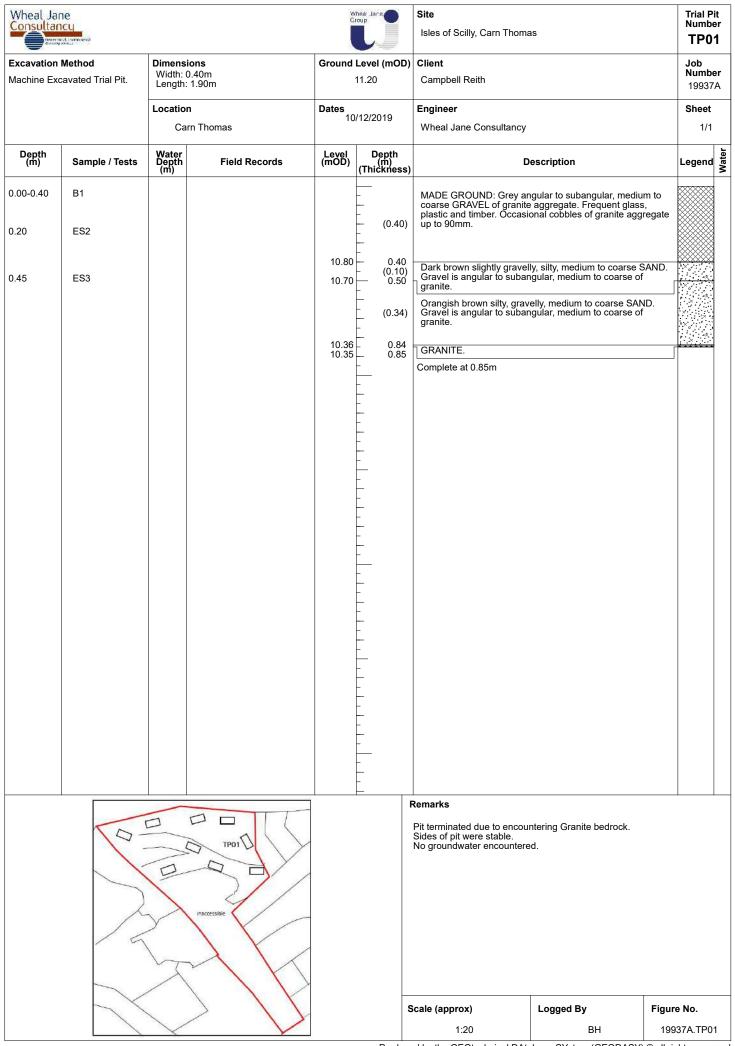
5 NOTES

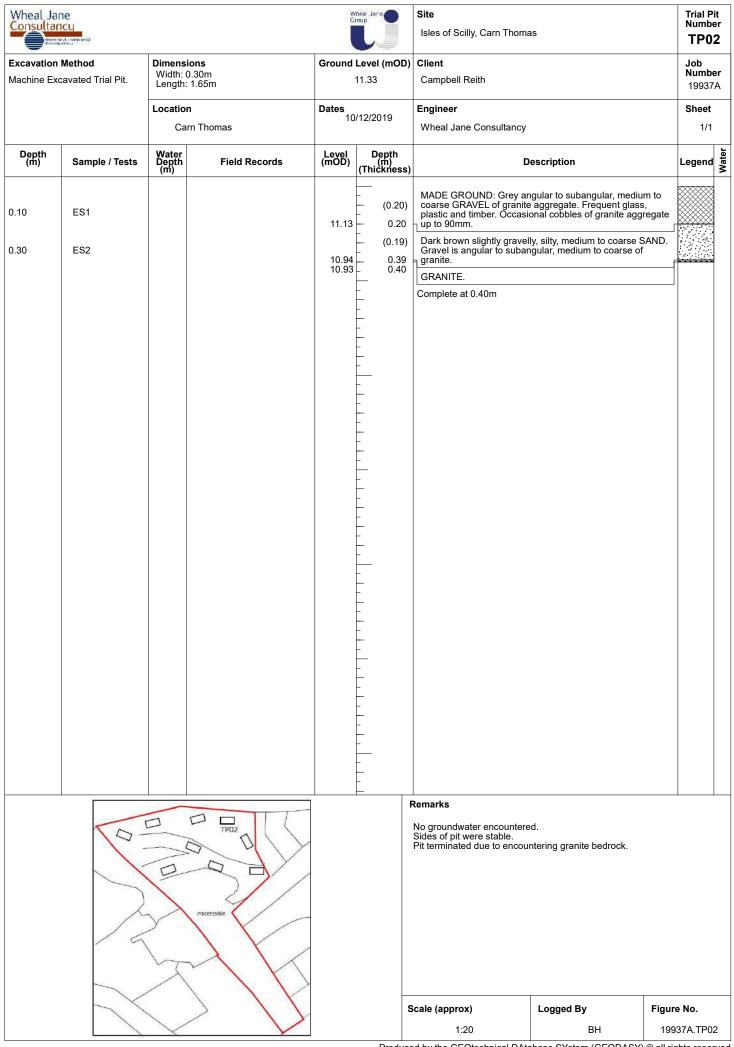
- 5.1.1 This report is concerned solely with the property, as defined by this report, or parts thereof examined.
- 5.1.2 The report should not be used in connection with adjacent properties.
- 5.1.3 In respect of site works, Wheal Jane Consultancy cannot accept any liabilities for any additional mine workings found outside the limits of any areas examined.
- 5.1.4 The information supplied by third parties which has been used in compiling this Phase 2 ground investigation report, is derived from a number of statutory and non-statutory sources. While every effort is made by the supplier to ensure accuracy, the supplier cannot guarantee the accuracy or completeness of such information or data, nor to identify all the factors that may be relevant.
- 5.1.5 The conclusions and recommendations relate to the type and extent of development outlined in this report for this specific property only and should not be taken as suitable for any other form or extent of development on this property without further consultation with Wheal Jane Consultancy.
- 5.1.6 This report is confidential to the client, the client's legal and professional advisors, and may not be reproduced or distributed without our permission other than to directly facilitate the sale or development of the property concerned.
- 5.1.7 We have no liability toward any person not party to commissioning this report.
- 5.1.8 Unless otherwise expressly stated, nothing in this report shall create or confer any rights or other benefits pursuant to the Contracts (Rights of Third Parties) Act 1999 in favour of any person other than the person commissioning this report.
- 5.1.9 This report is not an asbestos inspection that may fall within the control of Control of Asbestos Regulations 2006

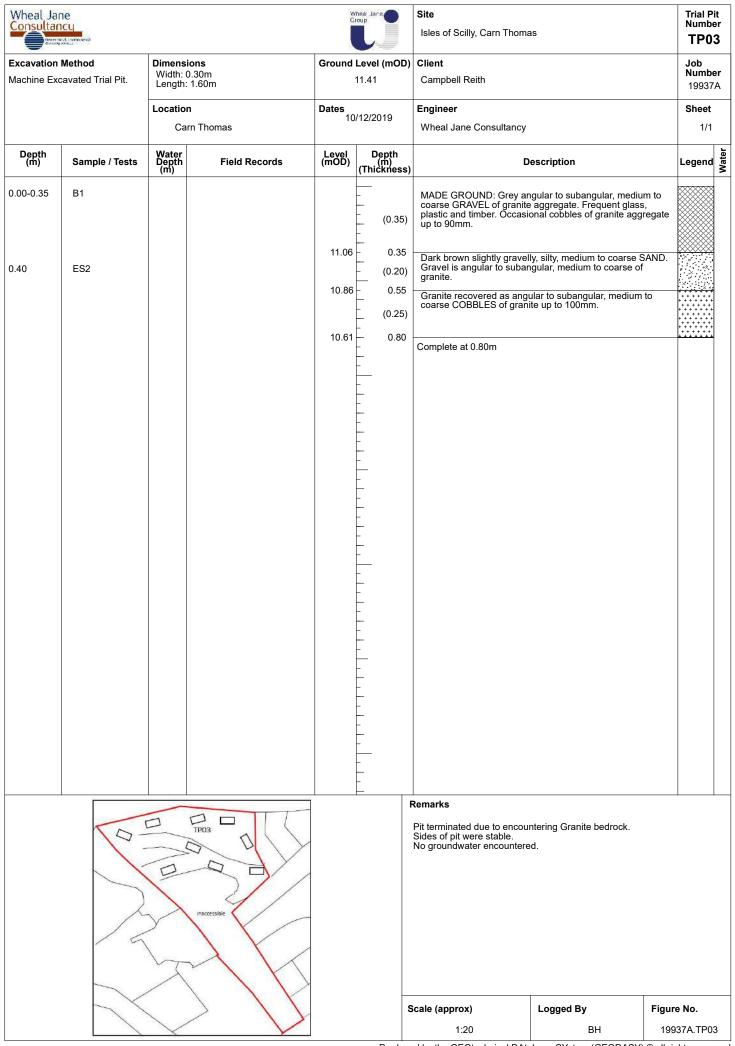


FIGURES:

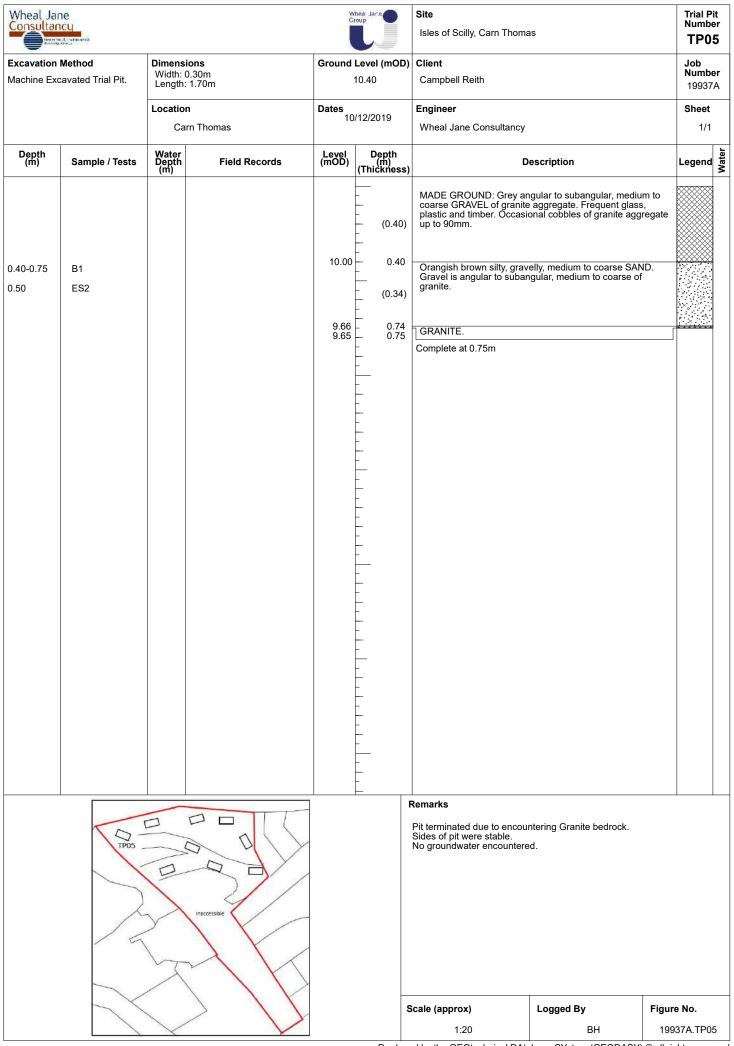
Legend:
Wheal Jane Consultancy Geotechnical, environmental Mining services
Title:
Current Site Layout
Current Site Layout Project:
Current Site Layout
Current Site Layout Project:
Current Site Layout Project: Carn Thomas 19937A Client: Homes England c/o Campbell Reith
Current Site Layout Project: Carn Thomas 19937A Client: Homes England c/o Campbell Reith Date: 24/01/2020
Current Site Layout Project: Carn Thomas 19937A Client: Homes England c/o Campbell Reith Date: 24/01/2020 Scale: NTS
Current Site Layout Project: Carn Thomas 19937A Client: Homes England c/o Campbell Reith Date: 24/01/2020 Scale: NTS Drawn by: BH
Current Site Layout Project: Carn Thomas 19937A Client: Homes England c/o Campbell Reith Date: 24/01/2020 Scale: NTS

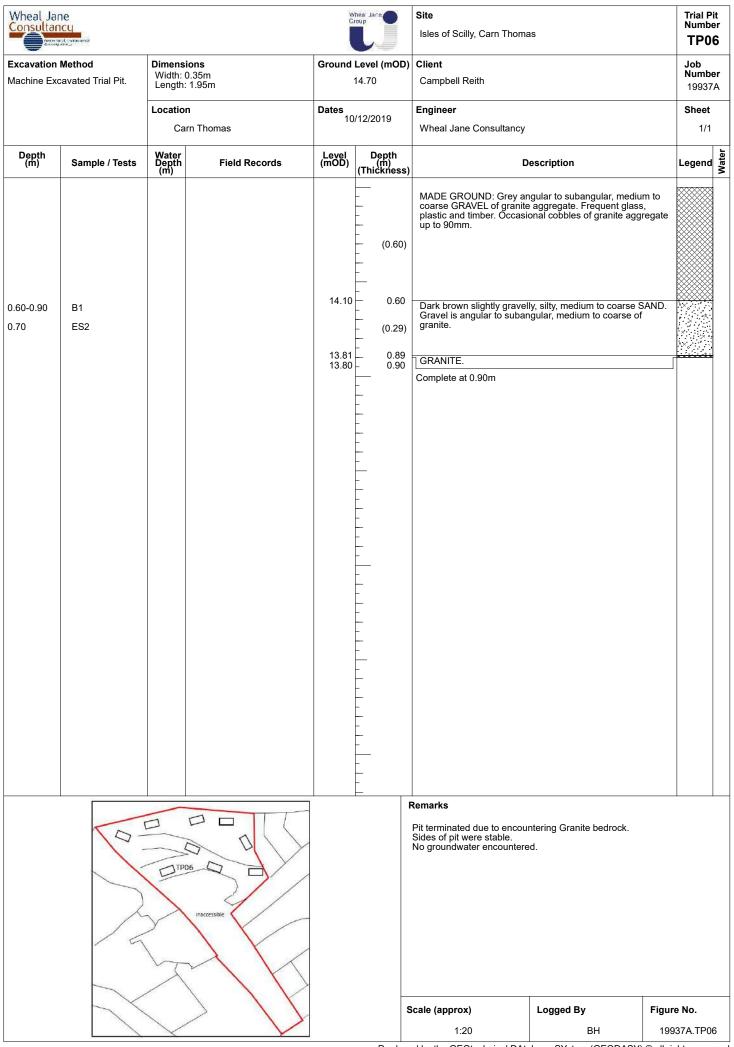


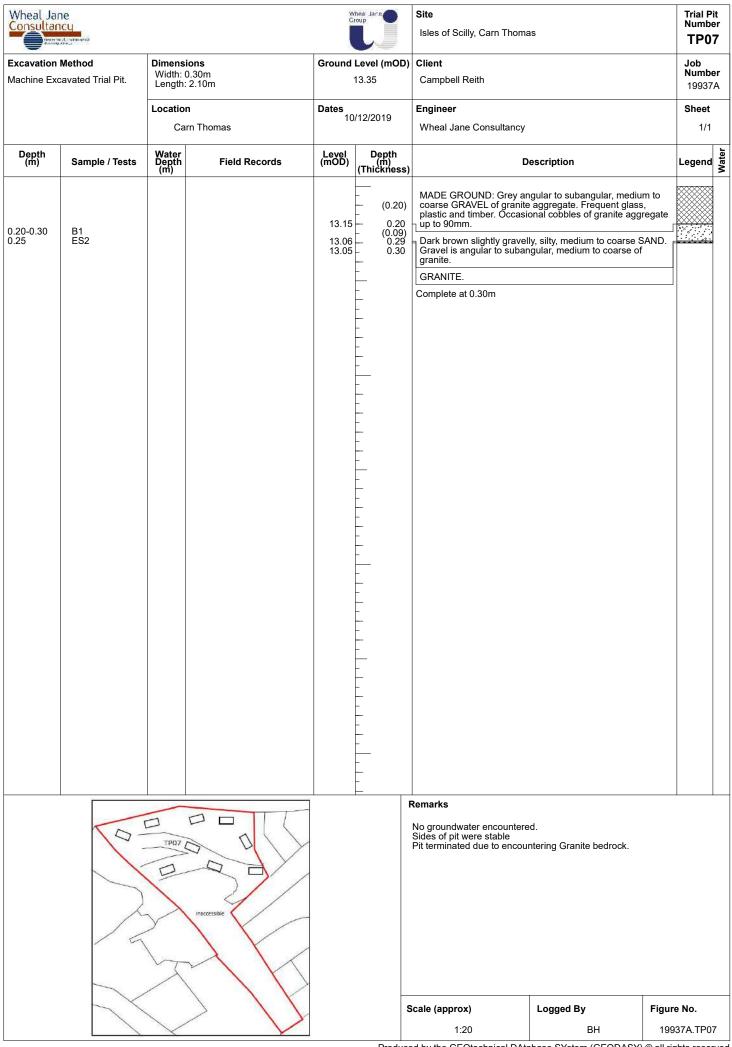

	$\mathbf{\Lambda}$
	N
1	Legend:
/	
/	Trial Pit
1	
al l	
-1	
7	
2	
10	
- Stone wall	Wheal Jane
	Consultancy
4.6	Geotechnical, environmental & mining services
11	
al wan	Title:
NY2	Exploratory Hole Location Plan
AN.	
S AND	Project:
$\langle \rangle$	Carn Thomas
/	
	19937A
× 1	Client:
2/1	Homes England c/o Campbell Reith
, O	Data: 24/01/2020
/	Date: 24/01/2020 Scale: NTS
	Drawn by: BH
	Revision: A Figure: 3.1
	Figure: 3.1

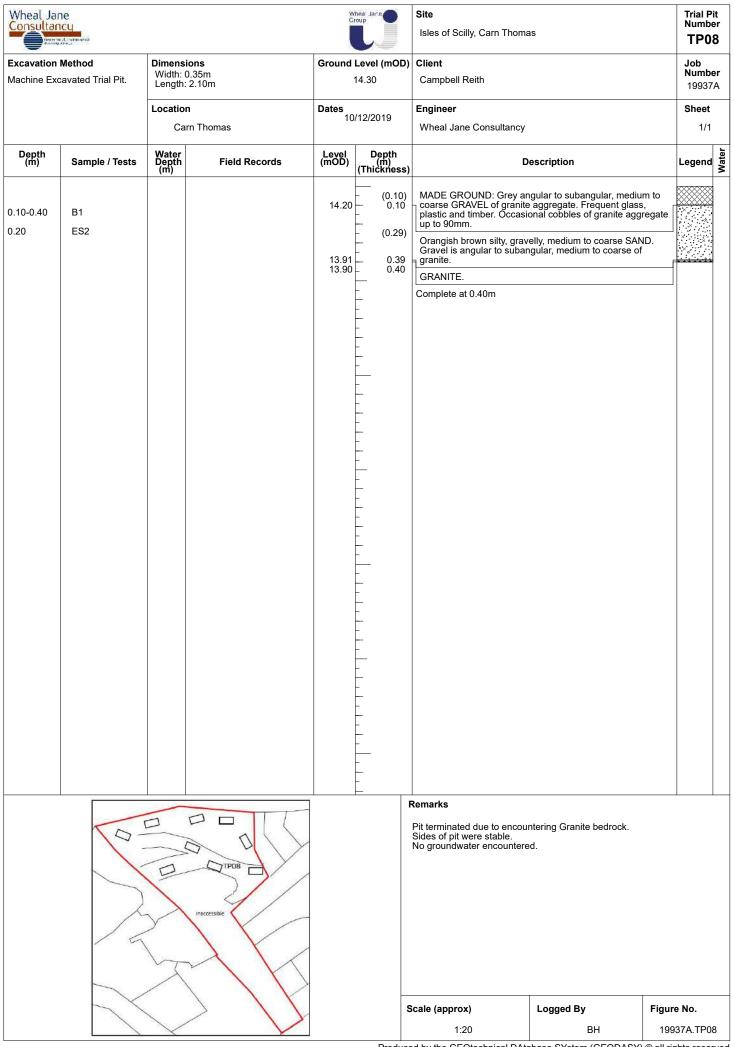


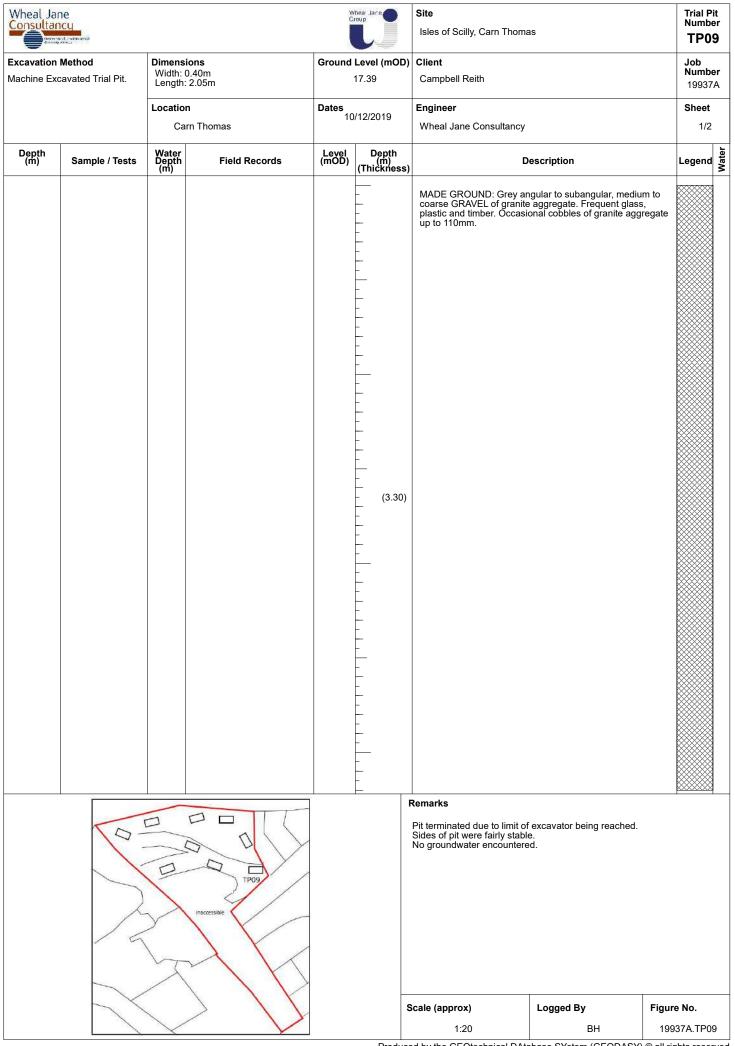
APPENDIX A


Trial Pit Logs









Under Sexawated Tital Plu. Width: 0.40m (no.40m) Date: 17.30 Campbel Reith Number (no.40m) Location Location Date: 10/12/2019 Engineer (Neal Jane Consultancy) Steel JRM Sample / Tests Verter (Nm) Field Records (400) Ogenth (Nm) Description Legend Image: Sample / Test Verter (Nm) Field Records (400) (400) Complete at 3.30m Image: Sample / Test (400)	Wheal Jane Consultancy			č	Whea Jane	Site Isles of Scilly, Carn Thomas	Trial Pi Numbe TP0
Cam Thomas Utilized Records Legent (nackless) Description Legent P001 ^h Sample / Tests Votest (mackless) 14.09 3.80 Complete at 3.30m 14.09 3.80 Image: Sample / Tests Image: Sample / Tes	Excavation Method Machine Excavated Trial Pit.	Width: 0.4	40m				Numbe
an			Thomas	Dates	0/12/2019		
an	Depth (m) Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
				14.09		Complete at 3.30m	
	lan 	- - -	· · · ·	· · ·	• •		d.

APPENDIX B

Trial Pit Photographs

Before Excavation

After Reinstatement

Title:	Trial Pit Photograph	5	Whash loop
Project:	Isles of Scilly, Carn T	Wheal Jane Consultancy	
Client:	Campbell Reith		Geotechnical, environmental & mining services
Report Title:	Ground Investigation	٦	
Date:	December 2019	Ref: 19937A	Trial Pit: TP01

Title:	Trial Pit Photographs	5	Wheel loop
Project:	Isles of Scilly, Carn T	Wheal Jane Consultancy	
Client:	Campbell Reith		Geotechnical, environmental & mining services
Report Title:	Ground Investigation	ר	
Date:	December 2019	Ref: 19937A	Trial Pit: TP01

Title:	Trial Pit Photographs		Wheel less
Project:	Isles of Scilly, Carn Thomas		Wheal Jane Consultancy
Client:	Campbell Reith	Geotechnical, environmental & mining services	
Report Title:	Ground Investigation		
Date:	December 2019	Ref: 19937A	Trial Pit: TP01

Before Excavation

After Reinstatement

Title:	Trial Pit Photographs		Wheel loop
Project:	Isles of Scilly, Carn Thomas		Wheal Jane Consultancy
Client:	Campbell Reith		Geotechnical, environmental & mining services
Report Title:	Ground Investigation		
Date:	December 2019	Ref: 19937A	Trial Pit: TP02

Title:	Trial Pit Photographs		Wheel loss
Project:	Isles of Scilly, Carn Thomas		Wheal Jane Consultancy
Client:	Campbell Reith		Geotechnical, environmental & mining services
Report Title:	Ground Investigation		
Date:	December 2019	Ref: 19937A	Trial Pit: TP02

Title:	Trial Pit Photographs		Wheel loop
Project:	Isles of Scilly, Carn Thomas		Wheal Jane Consultancy
Client:	Campbell Reith		Geotechnical, environmental & mining services
Report Title:	Ground Investigation		
Date:	December 2019	Ref: 19937A	Trial Pit: TP02

Title:	Trial Pit Photographs		
Project:	Isles of Scilly, Carn Thomas		Wheal Jane Consultancy
Client:	Campbell Reith		Geotechnical, environmental & mining services
Report Title:	Ground Investigation		
Date:	December 2019	Ref: 19937A	Trial Pit: TP02

After Reinstatement

Title:	Trial Pit Photographs		
Project:	Isles of Scilly, Carn Thomas		
Client:	Campbell Reith		
Report Title:	Ground Investigation		
Date:	December 2019	Ref: 19937A	

Title:	Trial Pit Photographs		Whash loss
Project:	Isles of Scilly, Carn Thomas		Wheal Jane Consultancy
Client:	Campbell Reith		Geotechnical, environmental & mining services
Report Title:	Ground Investigation		
Date:	December 2019	Ref: 19937A	Trial Pit: TP03

Title:	Trial Pit Photographs		Wheel loop
Project:	Isles of Scilly, Carn Thomas		Wheal Jane Consultancy
Client:	Campbell Reith		Geotechnical, environmental & mining services
Report Title:	Ground Investigation		
Date:	December 2019	Ref: 19937A	Trial Pit: TP03

Title:	Trial Pit Photographs		Whash loss
Project:	Isles of Scilly, Carn Thomas		Wheal Jane Consultancy
Client:	Campbell Reith		Geotechnical, environmental & mining services
Report Title:	Ground Investigation		
Date:	December 2019	Ref: 19937A	Trial Pit: TP03

After Reinstatement

Title:	Trial Pit Photographs	
	Isles of Scilly, Carn Thomas	
Client:	Campbell Reith	
Report Title:	Ground Investigation	
Date:	December 2019	Ref: 19937A

Trial Pit: TP04

Title:	Trial Pit Photographs	Wheel less
Project:	Isles of Scilly, Carn Thomas	Wheal Jane Consultancy
Client:	Campbell Reith	Geotechnical, environmental & mining services
Report Title:	Ground Investigation	
Date:	December 2019 Ref: 19937A	Trial Pit: TP04

Title:	Trial Pit Photographs		Wheel loca
Project:	Isles of Scilly, Carn Tho	omas	Wheal Jane Consultancy
Client:	Campbell Reith		Geotechnical, environmental & mining services
Report Title:	Ground Investigation		
Date:	December 2019	Ref: 19937A	Trial Pit: TP04

Title:	Trial Pit Photographs	;	Wheel loop
Project:	Isles of Scilly, Carn Th	nomas	Wheal Jane Consultancy
Client:	Campbell Reith		Geotechnical, environmental & mining services
Report Title:	Ground Investigatior)	
Date:	December 2019	Ref: 19937A	Trial Pit: TP04

After Reinstatement

Title:	Trial Pit Photographs	
Project:	Isles of Scilly, Carn Thomas	
Client:	Campbell Reith	
Report Title:	Ground Investigation	
Date:	December 2019 Ref: 19937A	

Trial Pit: TP05

Title:	Trial Pit Photographs		Wheel less
Project:	Isles of Scilly, Carn Tho	omas	Wheal Jane Consultancy
Client:	Campbell Reith		Geotechnical, environmental & mining services
Report Title:	Ground Investigation		
Date:	December 2019	Ref: 19937A	Trial Pit: TP05

Title:	Trial Pit Photographs		Wheel less
Project:	Isles of Scilly, Carn Tho	omas	Wheal Jane Consultancy
Client:	Campbell Reith		Geotechnical, environmental & mining services
Report Title:	Ground Investigation		
Date:	December 2019	Ref: 19937A	Trial Pit: TP05

Title:	Trial Pit Photographs		Whash loss
Project:	Isles of Scilly, Carn Tho	omas	Wheal Jane Consultancy
Client:	Campbell Reith		Geotechnical, environmental & mining services
Report Title:	Ground Investigation		
Date:	December 2019	Ref: 19937A	Trial Pit: TP05

After Reinstatement

Title:	Trial Pit Photographs	Wheel loop
Project:	Isles of Scilly, Carn Thomas	Wheal Jane Consultancy
Client:	Campbell Reith	Geotechnical, environmental & mining services
Report Title:	Ground Investigation	
Date:	December 2019 Ref: 19937A	Trial Pit: TP06

Title:	Trial Pit Photographs		M/haal laas
Project:	Isles of Scilly, Carn Tho	mas	Wheal Jane Consultancy
Client:	Campbell Reith		Geotechnical, environmental & mining services
Report Title:	Ground Investigation	l	
Date:	December 2019	Ref: 19937A	Trial Pit: TP06

Title:	Trial Pit Photographs		Wheel loop
Project:	Isles of Scilly, Carn Tho	omas	Wheal Jane Consultancy
Client:	Campbell Reith		Geotechnical, environmental & mining services
Report Title:	Ground Investigation		
Date:	December 2019	Ref: 19937A	Trial Pit: TP06

Title:	Trial Pit Photographs		Wheel loop
Project:	Isles of Scilly, Carn Tho	omas	Wheal Jane Consultancy
Client:	Campbell Reith		Geotechnical, environmental & mining services
Report Title:	Ground Investigation		
Date:	December 2019	Ref: 19937A	Trial Pit: TP06

After Reinstatement

Title:	Trial Pit Photographs	5	Wheel loop
Project:	Isles of Scilly, Carn Thomas		Wheal Jane Consultancy
Client:	Campbell Reith		Geotechnical, environmental & mining services
Report Title:	Ground Investigation	ר	
Date:	December 2019	Ref: 19937A	Trial Pit: TP07

Title:	Trial Pit Photographs		Wheel loca
Project:	Isles of Scilly, Carn Thomas		Wheal Jane Consultancy
Client:	Campbell Reith		Geotechnical, environmental & mining services
Report Title:	Ground Investigation		
Date:	December 2019	Ref: 19937A	Trial Pit: TP07

Title:	Trial Pit Photographs		Wheel less
Project:	Isles of Scilly, Carn Thomas		Wheal Jane Consultancy
Client:	Campbell Reith		Geotechnical, environmental & mining services
Report Title:	Ground Investigation		
Date:	December 2019	Ref: 19937A	Trial Pit: TP07

Title:	Trial Pit Photographs		Wheel less
Project:	Isles of Scilly, Carn Thomas		Wheal Jane Consultancy
Client:	Campbell Reith		Geotechnical, environmental & mining services
Report Title:	Ground Investigation		
Date:	December 2019	Ref: 19937A	Trial Pit: TP07

After Reinstatement

Title:	Trial Pit Photographs	Wheel less
Project:	Isles of Scilly, Carn Thomas	Wheal Jane Consultancy
Client:	Campbell Reith	Geotechnical, environmental & mining services
Report Title:	Ground Investigation	
Date:	December 2019 Ref: 19937A	Trial Pit: TP08

Title:	Trial Pit Photographs		Wheel less
Project:	Isles of Scilly, Carn Thomas		Wheal Jane Consultancy
Client:	Campbell Reith		Geotechnical, environmental & mining services
Report Title:	Ground Investigation		
Date:	December 2019	Ref: 19937A	Trial Pit: TP08

Title:	Trial Pit Photographs		Wheel loop
Project:	Isles of Scilly, Carn Thomas		Wheal Jane Consultancy
Client:	Campbell Reith		Geotechnical, environmental & mining services
Report Title:	Ground Investigation		
Date:	December 2019	Ref: 19937A	Trial Pit: TP08

Title:	Trial Pit Photographs		Wheel loop
Project:	Isles of Scilly, Carn Thomas		Wheal Jane Consultancy
Client:	Campbell Reith		Geotechnical, environmental & mining services
Report Title:	Ground Investigation		
Date:	December 2019	Ref: 19937A	Trial Pit: TP08

After Reinstatement

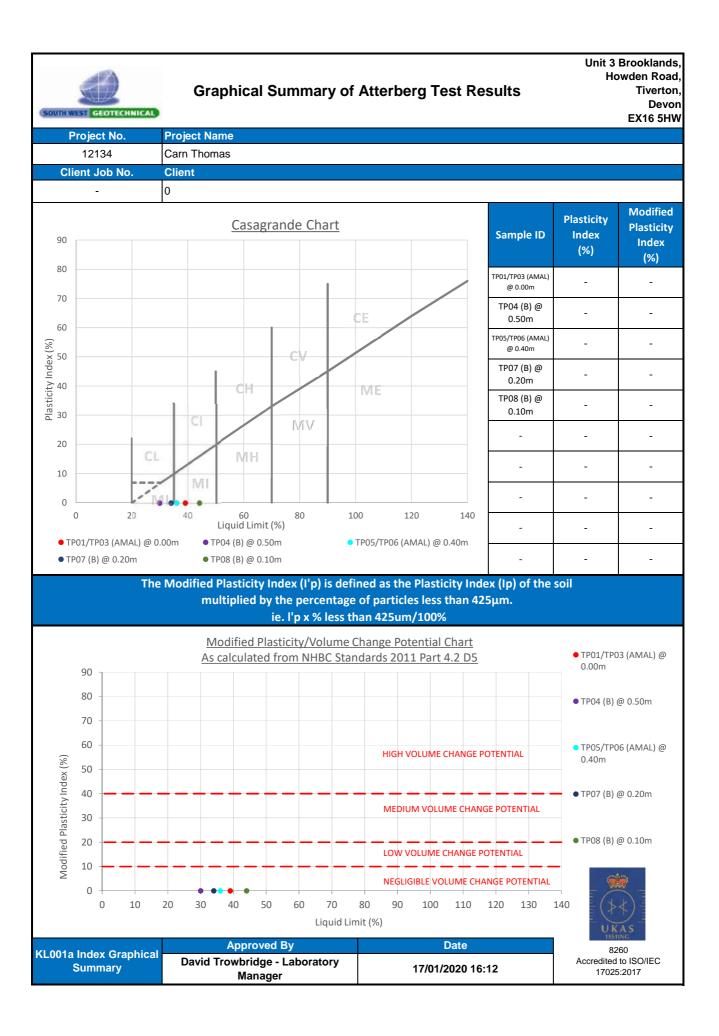
Title:	Trial Pit Photographs		Wheel loop
Project:	Isles of Scilly, Carn Thomas		Wheal Jane Consultancy
Client:	Campbell Reith		Geotechnical, enviro & mining services
Report Title:	Ground Investigation	n	
Date:	December 2019	Ref: 19937A	Trial Pit: TP09

Geotechnical, environmental & mining services

Title:	Trial Pit Photographs		Whash loss
Project:	Isles of Scilly, Carn Thomas		Wheal Jane Consultancy
Client:	Campbell Reith		Geotechnical, environmental & mining services
Report Title:	Ground Investigation	l	
Date:	December 2019	Ref: 19937A	Trial Pit: TP09

Title:	Trial Pit Photographs		Wheel less
Project:	Isles of Scilly, Carn Thomas		Wheal Jane Consultancy
Client:	Campbell Reith		Geotechnical, environmental & mining services
Report Title:	Ground Investigation		
Date:	December 2019	Ref: 19937A	Trial Pit: TP09

Title:	Trial Pit Photographs		Whash loss
Project:	Isles of Scilly, Carn Thomas		Wheal Jane Consultancy
Client:	Campbell Reith		Geotechnical, environmental & mining services
Report Title:	Ground Investigation		
Date:	December 2019	Ref: 19937A	Trial Pit: TP09


APPENDIX C

Geotechnical Laboratory Results

SOUTH W	EST GEOTE	Test Report		South West Geotechnical Ltd Unit 3 Brooklands, Howden Road, Tiverton, Devon EX16 5HW
Job No:		12134	Date Received:	30/12/19
Job Name:		Carn Thomas	Date Sent:	17/01/20
Client Nam	e:	Wheal Jane Ltd	Transmittal Number:	T5358
Client Job		-	Senders Initials:	DT
			Report Revision No.	1
Client Add	ress	Old Mine Offices, Wheal Jane, Baldhu, Truro, Cornwall, TR3 6EE	Sampled by SWG lab st	
Ref.		Test Detail		No. of Tests / Report No.
A1		BS1377: Part 2: 1990: Clause 3 - Moisture Content - UKA	S Accredited	5
A5	E	351377: Part 2: 1990: Clause 4 & 5 - Atterberg Limits - UK	AS Accredited	5
A9	BS137	7: Part 2: 1990: Clause 9.2 / 9.3 - Particle Size Distribution	n - UKAS Accredited	5
A10	BS13	377: Part 2: 1990: Clause 9.4 - Sedimentation by Pipette -	UKAS Accredited	5
Samp Approved		rformed by South West Geotechnical laboratory staff. F	Results apply to the sam	ples as received.
David Trow Dan Ayre (C Matt Stokes	uality Mana			
		ed within this report only relate to the samples tested, are shall not be reproduced except in full, without prior w laboratory.		8260 Accredited to ISO/IEC 17025:2017

Page 2 of 8

SOUTH WE	ST GEO		CAL		Summary of Classificatio	n Test	Results	;				Unit 3 Brooklands, Howden Road, Tiverton, Devon EX16 5HW
Proj	ect No.				Project Name							_ 👮 _
12	2134				Carn Thomas							
Client	Job No).			Client							8260 Accredited to
19	937A				Wheal Jane Consultant	су						ISO/IEC 17025:2017
Hole No.	Туре	Sa Top	mple Base	Ref	Soil Description	<i>тс</i> СІ.3.2	Passing 425µm	LL	PL CI5.3	РІ Сі5.4	Particle density	Remarks
		<u> </u>				%	%	%	%	%	Mg/m3	
TP01/TP03	AMAL	0.00	0.40	-	Dark grey silty very sandy GRAVEL	13	28 - Sieved	39 - 1pt	NP	-	-	
TP04	В	0.50	0.80	-	Dark brown silty very sandy GRAVEL	15	38 - Sieved	30 - 1pt	NP	-	-	
TP05/TP06	AMAL	0.40	0.90		Greyish brown silty very andy GRAVEL	12	25 - Sieved	26	NP	-	-	
TP07	в	0.20	0.30	-	Dark brown silty very sandy GRAVEL	17	40 - Sieved	24	NP	-	-	
TP08	в	0.10	0.40	-	Dark brown silty very sandy GRAVEL	15	18 - Sieved	44 - 1pt	NP	-	-	
						-	-	-	-	-	-	
						-	-	-	-	-	-	
						-	-	-	-	-	-	
						-	-	-	-	-	-	
						-	-	-	-	-	-	
	Prepa	aration	Clauses	: Particl	e Density (BS1377:Part 1: 1990: CL7.4.4) Atterberg Limits (BS1377:Part 1: 1	990: CL7.4.3) Moisture C	ontent	(BS13	77: Par	t 1: 1990: C	EL7.3.3 & 7.4.2)
4pt cor	ne (CL.4	4.3) unle		s	Particle density BS1377-2:1990 p - small pyknometer CL.8.3		Date		A	\pprove	ed By	Page No. 1
1pt - sı 4.2.3 - 4.2.4 - Moistur	Natural Sieved		(CL.4.4)	ļ (ıj - gas jar CL.8.2		17/01/2020			Stokes Techni	- Senior cian	KL001R Index Summary

12134 - T5358 - Results.pdf

Page 4 of 8

	Ç				Р	ART	ICL	e si	IZE	DIS	TR	IBI	JTI	ON				Pro	ject I	۱o.				1	213	4		12134					
SOU	TH WEST	GEOTECHNIC	AL		-									••••				Bor	ehol	e/Pit	No.			TP	01/T	P03							
Ρ	roject	t Name		Carr	n Thoma	S												San	nple	No.			-										
S	oil De	escriptio	n	Dark	grey silty	very	sandy	GRA	AVEL									Dep	oth, n	า					0.00)							
	pecin efere				1			Spec Dept		n						rr	n	San	nple	Туре	÷			ļ	۹MA	L							
T	est M	ethod		BS13	377:Part 2	2:1990), clau	ises S	9.2 ar	nd 9.4	1																						
	-	CLAY	Fin	e	SILT Medium	Co	arse	F	ine		SANE 1ediui		Со	arse		Fine		GRA Medi		Со	arse	- cc	BBLES		BOU	LDER	s	_					
	100															i							Т										
	90												_											_									
	80																																
	70																																
% Bu	60																																
rassi																																	
Percentage Passing	50																	Χ															
Iacia	40												_																				
-	30														\prec									-		+							
	20												/																				
	10																																
	0																																
	0.	.001			0.01			0.	.1		Р	artic	1 le S	ize	mm			10				1	00				10	00					
			Sie	ving				Sec	dime	ntatio	on					_	N <i>A</i> -																
	P	article S mm			Passing	1	Partic n	le Sia nm	ze	%	Pas	sing				Dry	Mas	ss of	r sar	npie	, g				1473	2							
		125			100		0.0	201			3							porti	ons					% (nass	;						
		90 75			100 100	_)060)020			1 0				Very Grav	/ coa vel	arse								0 69								
		63			100										San	d									24								
	\vdash	50 37.5			91 75	_ _			-+				_		Silt Clay										7								
		28			63										- Shary										~								
		20			56															Grad	ding	_	ysis										
	\vdash	14 10			52 48	_ _			-+						D10						mr				24.4	1							
	\vdash	10 6.3			48	_∦_			\rightarrow				_		D60 D30						mr mr				1.86								
	\vdash	5			40				-+				\neg		D30						mr				0.16								
		3.35			36										Unif	orm		Coeff							150								
		2			31										Curv	vatu	re C	oeffi	cient						0.87	,							
		1.18			26																												
	┣—	0.63			20	Pa	article 2		sity		ssur Ma/r				Rem																		
	-	0.425			17 14		2	.65			Mg/r	nə			Prep			d testin unless				'n		3									
	-	0.3			14										1	-								1									
		0.15			10													d testin rt 1: 19				h			14								
		0.063			7										۱ ^۱	53137	7: Pa	11 1: 19	90 CL	1.3 & T	.4.5			L	KA	s							
				-											1							1											
																									8260)							
																								Acc	redit	ed to)						
		Appro	oved	by				Date	e			eet _002	_											Acc IS		ed to EC)						

T

	Ó			D		- 6175 D	ISTRIBUTI		Project	No.		12134	
SOUT	H WEST G	EOTECHNIC		F /			ISTRIBUT		Boreho	ole/Pit No.		TP04	
P	oject	Name	Ca	arn Thomas	6				Sample	e No.		-	
S	oil Des	scriptio	n Da	ark brown silt	y very sanc	ly GRAVEL			Depth,	m		0.50	
	oecim eferen			6		Specimen Depth			m Sample	е Туре		В	
Te	est Me	ethod	BS	\$1377:Part 2	:1990, clau	se 9.2			•				
	_	CLAY	Fine	SILT Medium	Coarse	Fine	SAND Medium Co	arse Fin	GRAVEL e Medium	Coarse	COBBLES	BOULDERS	
	100 -												
	90 -												
	80 -												
	70 -												
g %													
Percentage Passing %	60 -												
tage F	50 -												
ercen	40 -												
Ф.	30 -												
	20 -												
	10 -												
	0 - 0.0	001		0.01		0.1	1		10		100		1000
							Particle S	ize mm					
			Sievin	g		Sedimenta	tion	Dr	y Mass of sa	ample <u>, a</u>		8781	
	Pa	rticle S	ze		Partic	e Size							

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	assing 00 00 00 00 93 88 85 81 77 73	Particle Size mm	% Passing
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00 00 93 88 85 81 77 73		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00 00 93 88 85 81 77 73		
63 1 50 9 37.5 9 28 9 20 9 14 9 6.3 9 5 9	00 93 88 85 81 77 73		
50 9 37.5 9 28 9 20 14 10 9 6.3 9 5 9	93 88 85 81 77 73		
37.5 28 20 14 10 6.3 5	88 85 81 77 73		
28 3 20 3 14 3 10 3 5 9	85 81 77 73		
20 14 10 10 6.3 0 5 0	81 77 73		
14 10 6.3 5	77 73		
10 6.3 5	73		
6.3 5	-		
5			
-	66		
3.35	62		
0.00	55		
2	49		
1.18	43		
0.63	35		-
0.425	29		
0.3	24		
0.2	18		
0.15	15		
0.063	10		

Very coarse		0
Gravel		51
Sand		38
Fines <0.063mm		10
	Grading Analysi	S
D100		
	mm	
D60	mm mm	4.43
		4.43 0.444

R	e	m	а	r	ks

Sample Proportions

Preparation and testing in accordance with BS1377 unless noted below

Uniformity Coefficient Curvature Coefficient

Preparation and testing in accordance with BS1377 - Deviation to standard as insufficient material provided in order to meet the minimum mass requirement

dry mass

%

٦

8260 Accredited to ISO/IEC 17025:2017

Approved by	Date	Sheet ID:
Matt Stokes - Senior Technician	17/01/2020	KL002R PSD

12134 - T5358 - Results.pdf

Page 6 of 8

Project Name Carn Thomas Sample Soil Description Greyish brown silty very andy GRAVEL Depth, n Specimen 2 Specimen m Sample Test Method BS1377:Part 2:1990, clauses 9.2 and 9.4 GRAVEL GRAVEL CLAY Fine Medium Coarse Fine Medium Grave Grave<th>n 0.40</th>	n 0.40
Soil Description Greyish brown silty very andy GRAVEL Depth, m Specimen Reference 2 Specimen Depth m Sample Test Method BS1377:Part 2:1990, clauses 9.2 and 9.4 CLAY SILT SAND GRAVEL 100	n 0.40 Type AMAL
Specimen Reference 2 Specimen Depth m Sample Test Method BS1377:Part 2:1990, clauses 9.2 and 9.4	Type AMAL
Reference 2 Depth III Sample Test Method BS1377:Part 2:1990, clauses 9.2 and 9.4 CLAY SILT SAND GRAVEL 100 III III SAND GRAVEL 100 IIII IIII GRAVEL Medium 100 IIII IIII GRAVEL 100 IIII IIII GRAVEL 100 IIII IIIII GRAVEL 100 IIII IIIII GRAVEL 100 IIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
CLAY SILT SAND GRAVEL Fine Medium Coarse Fine Medium Coarse Fine Medium 100 100 100 100 100 100 100 100 100 100 90 80 100 100 100 100 100 100 100 100 100 100 90 60 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	Coarse COBBLES BOULDERS
CLAY Fine Medium Coarse Fine Medium Coarse Fine Medium 100 9	Coarse COBBLES BOULDERS I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
70 60 50 40 30 20	
60 50 40 30 20	
30 20	
30 20	
30	
30	
20	
10	
0.001 0.01 0.1 1 10 Particle Size mm	100 100
Cisving Codimentation	
Particle Size % Passing Particle Size % Passing Dry Mass of Sar	mple, g 16045
mmM about y1251000.02013Sample Proportions	% dry mass
90 100 0.0060 1 Very coarse	0
75 100 0.0020 0 Gravel	73
63 100 Sand 50 92 Silt	<u>21</u> 6
37.5 83 Clay	0
28 74	
	Grading Analysis
14 60 D100 10 53 D60	mm 13.8
6.3 45 D30	mm 2.47
5 40 D10	mm 0.209
3.35 34 Uniformity Coefficien	
2 27 Curvature Coefficient 1.18 22	t 2.1
0.63 17 Particle density (assumed) Remarks	
0.425 14 2.65 Mg/m3 Preparation and testing in ac	ccordance with
0.3 12 BS1377 unless noted	d below
0.2 10 Preparation and testing in ac BS1377 - Deviation to standar	
0.15 9 0.063 6	to meet the
	8260
Approved by Date Sheet ID:	Accredited to

ISO/IEC 17025:2017

Approved by	Date	Sheet ID:
Matt Stokes - Senior Technician	17/01/2020	KL002R PSD

	d	8	_			DA	RTI		= 91	ZEI	פוח			. I.Т					Pr	ojec	t No					1:	2134	4		
SOUT	TH WEST	GEOTECHNIC	AL							<u>د</u> ۲)		0.					В	oreh	ole/F	Pit No	b .			Т	P07	,		
P	roject	Name		Carn	Thom	as													Sa	ampl	e No).					-			
Se	oil De	escriptio	n	Dark	brown	silty	very	sand	ly GR	₹AVEI	_								De	epth,	m					(0.20			
	pecim eferer				6				Spec Deptl	imen h							r	n	Sa	ampl	е Ту	ре					В			
Те	est Me	ethod		BS13	77:Par	t 2:1	990,	claus	se 9.2	2																				
-		CLAY	Fine		SILT Medium	 n	Coar	se	F	ïne		SAN[/lediu		C	oarse		Fine			AVEL dium		Coars	e	СОВ	BLES		BOUL	DERS		
	100															1									1					
	90		_			+	_																							
	80		_			+																1								
۶ 8	70																			/	/									
Passinį	60					+													1											
Percentage Passing %	50 · 40 ·																1													
Perc	40 · 30 ·																													
													1																	
	20										/																			
	10 ·																													
		001			0.01				0.	1					1				1	0				10	0				1000	С
												Ρ	'arti	cle S	Size	mm														

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	93		
37.5	79		
28	76		
20	72		
14	67		
10	62		
6.3	57		
5	54		
3.35	49		
2	44		
1.18	39		
0.63	32		
0.425	27		
0.3	22		
0.2	16		
0.15	13		
0.063	9	1	

Approved by	Date	Sheet ID:
Matt Stokes - Senior Technician	17/01/2020	KL002R PSD

Dry Mass of sample, g	7712
Sample Proportions	% dry mass
Very coarse	0
Gravel	57
Sand	34
Fines <0.063mm	9

Grading Analysis									
D100	mm								
D60	mm	8.47							
D30	mm	0.539							
D10	mm	0.0754							
Uniformity Coefficient		110							
Curvature Coefficient		0.45							

Remarks

Preparation and testing in accordance with BS1377 unless noted below

Preparation and testing in accordance with BS1377 - Deviation to standard as insufficient material provided in order to meet the minimum mass requirement

8260 Accredited to ISO/IEC 17025:2017

	d	2				A D.		-	0175	. ם		-01		1710	Project No. 12134																
SOUT	TH WEST	GEOTECHNICA	AL		P	AR	HCL	.E ;	SIZE	נט :	51	RI	BL		JN				Вс	oreh	ole	/Pit	No					TI	> 08		
Pr	rojec	t Name		Carn	Thoma	S													Sa	mp	le N	lo.			-						
Sc	oil De	escriptio	n	Dark I	brown sil	ty ve	ry sar	ndy (GRAV	EL									De	epth, m			0.10								
	pecin efere				6				ecime pth	en							n	n	Sa	mp	le T	уре	•	В							
Те	est M	ethod		BS13	77:Part 2	2:199	0, cla	use	9.2																						
	-	CLAY		1	SILT							ND							GR/						со	BBLE	ES	В	OULE	DERS	
	100		Fine	•	Medium	C	oarse		Fine		Med	dium		Coa	rse	_	Fine		Me	dium	1	Co	arse	•							
	90																														
	80																				/										
	70																		Ϊ												
% bu	60																	/													
Passi	50																														
Percentage Passing %																	/														
Perce	40														/	7															
	30													1	-																
	20											/																			
	10							-		-																					
	0 0.	.001			0.01				0.1		_			1				<u> </u>	10)	_!	_i		<u>i i</u>	1	00					1000
												Pa	rticl	e Siz	e	mm															
		article Si	Siev	ving			Parti		edime	enta	tior	١					Dry	Ma	ss (of s	am	ple	, <u>g</u>					9(036		
	P	mm	ize	%	Passing			cie : mm	Size	¢	% P	ass	ing																		
		125			100											San				tion	S						%	6 dr		ass	
		90			100	_ -											y coa	arse							-				0		
		75 63			100 100	_⊩								_		Gra San									-				62 30		
		50			100	_⊩								_		San	u								-				30		
		37.5			97					-				-		Fine	95 <(0.06	3mr	n					+				7		
	\vdash	28			93									\neg															-		
		20			87																G	Sr <u>a</u> c	ding	A I	nal	ysis	5				
		14			83											D10	0						_	, nm							
																				-		-	-								

Particle Size mm	% Passing	Particle Size mm	% Passing			
125	100					
90	100					
75	100					
63	100					
50	100					
37.5	97					
28	93					
20	87					
14	83					
10	76					
6.3	66					
5	58					
3.35	49					
2	38					
1.18	29					
0.63	22					
0.425	18					
0.3	16					
0.2	12					
0.15	11					
0.063	7					

Sample Proportions	% dry mass							
Very coarse	0							
Gravel	62							
Sand	30							
Fines <0.063mm	7							
Gradin	Grading Analysis							
D100	mm							

mm								
mm	5.35							
mm	1.27							
mm	0.125							
	43							
	2.4							
	mm mm mm							

Remarks

Preparation and testing in accordance with BS1377 unless noted below

Preparation and testing in accordance with BS1377: Part 1: 1990 CL7.3 & 7.4.5

8260 Accredited to ISO/IEC 17025:2017

Approved by	Date	Sheet ID:
Matt Stokes - Senior Technician	17/01/2020	KL002R PSD

David Trowbridge South West Geotechnical Ltd Unit 3 Brooklands Howden Road Tiverton Devon EX16 5HW

DETS Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 20-00079

Site Reference: Carn Thomas

Project / Job Ref: 12134 - T5358A

Order No: None Supplied

Sample Receipt Date: 08/01/2020

Sample Scheduled Date: 08/01/2020

Report Issue Number: 1

Reporting Date: 13/01/2020

Authorised by:

Dave Ashworth Technical Manager

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

Soil Analysis Certificate						
DETS Report No: 20-00079	Date Sampled	None Supplied				
South West Geotechnical Ltd	Time Sampled	None Supplied				
Site Reference: Carn Thomas	TP / BH No	TP01	TP03	TP04	TP05	TP06
Project / Job Ref: 12134 - T5358A	Additional Refs	None Supplied				
Order No: None Supplied	Depth (m)	GL - 0.40	GL - 0.35	0.50 - 0.80	0.40 - 0.75	0.60 - 0.90
Reporting Date: 13/01/2020	DETS Sample No	455081	455082	455083	455084	455085

Determinand	Unit	RL	Accreditation					
pH	pH Units	N/a	MCERTS	8.6	10.8	10.4	10.1	10.5
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	196	377	241	165	233
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.20	0.38	0.24	0.16	0.23

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C Subcontracted analysis (S)

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

Soil Analysis Certificate							
DETS Report No: 20-00079			Date Sampled	None Supplied	None Supplied		
South West Geotechnical Ltd			Time Sampled	None Supplied	None Supplied		
Site Reference: Carn Thomas			TP / BH No	TP07	TP08		
Project / Job Ref: 12134 - T5358A			Additional Refs	None Supplied	None Supplied		
Order No: None Supplied			Depth (m)	0.20 - 0.30	0.10 - 0.40		
Reporting Date: 13/01/2020		[DETS Sample No	455086	455087		
Determinand	Unit	R	L Accreditation				

Determinand	Unit	RL	Accreditation				
pН	pH Units	N/a	MCERTS	9.9	8.5		
W/S Sulphate as SO_4 (2:1)	mg/l	< 10	MCERTS	212	42		
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.21	0.04		

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than $30\,^{\circ}\text{C}$ Subcontracted analysis (S)

Page 3 of 5

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

Soil Analysis Certificate - Sample Descriptions	
DETS Report No: 20-00079	
South West Geotechnical Ltd	
Site Reference: Carn Thomas	
Project / Job Ref: 12134 - T5358A	
Order No: None Supplied	
Reporting Date: 13/01/2020	

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
^ 455081	TP01	None Supplied	GL - 0.40	13.5	Brown loamy sand with stones and vegetation
^ 455082	TP03	None Supplied	GL - 0.35	13.3	Brown sandy gravel with stones and concrete
^ 455083	TP04	None Supplied	0.50 - 0.80	13	Brown sandy clay with stones
^ 455084	TP05	None Supplied	0.40 - 0.75	10.4	Brown sandy clay with stones
^ 455085	TP06	None Supplied	0.60 - 0.90	12	Brown sandy gravel with stones and concrete
^ 455086	TP07	None Supplied	0.20 - 0.30	15.7	Brown sandy gravel with stones
^ 455087	TP08	None Supplied	0.10 - 0.40	11.7	Brown sandy gravel with stones and oil / petroleum

Moisture content is part of procedure E003 & is not an accredited test

Insufficient Sample $^{1/5}$ Unsuitable Sample $^{0/5}$ ^ no sampling date provided; unable to confirm if samples are within acceptable holding times

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

Soil Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 20-00079
South West Geotechnical Ltd
Site Reference: Carn Thomas
Project / Job Ref: 12134 - T5358A
Order No: None Supplied
Reporting Date: 13/01/2020

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR		Determination of BTEX by headspace GC-MS	E001
Soil	D		Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D		Determination of chloride by extraction with water & analysed by ion chromatography	E002
5011	D	Chioride - Water Soldble (2.1)	Determination of chonce by extraction with water & analysed by for chonatography Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of	2005
Soil	AR	Chromium - Hexavalent	1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR		Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D		Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR	EPH (C10 – C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
			Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	
Soil	AR	C12-C16, C16-C21, C21-C40)		E004
Soil	D		Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
			Determination of fraction of organic carbon by oxidising with potassium dichromate followed by	
Soil	D	FOC (Fraction Organic Carbon)	titration with iron (II) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D		Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR			E008
Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021
Soil	D	Phosphate - Water Soluble (2:1)	Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR	Sulphide	Determination of sulphide by distillation followed by colorimetry	E018
Soil	D	Sulphur - Total	Determination of total sulphur by extraction with agua-regia followed by ICB-OES	E024
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TFM)	Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with	E011
		TPH CWG (ali: C5- C6, C6-C8, C8-C10,	iron (II) sulphate	
Soil	AR	C10-C12, C12-C16, C16-C21, C21-C34,	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)		E004
Soil	AR		Determination of volatile organic compounds by headspace GC-MS	E001
Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

D Dried

AR As Received

SOUTH WEST GEOTECHNICAL				South west Geotechnical Unit 3 Brooklar Howden Ro Tivert Devon EX16 5			
Jo	b		Job No.	12134			
Clie	ent			Wheal Jane		Client Job No.	
BH/TP/WS	Sample	Sample	Test Affected	Reason for Restriction	Technicians (Comments	Client Response
TP01	0.00-0.40	В	Atterberg Limits	Insufficient Material			
-			PSD	Insufficient Material			
			Specific Gravity	Insufficient Material			Combine with TP03
			OMC/MDD	Insufficient Material	Material too coarse fo	or standard method	
TP03	0.00-0.40	В	Atterberg Limits	Insufficient Material			
			PSD	Insufficient Material			
			Specific Gravity	Insufficient Material			Combine with TP01
			OMC/MDD	Insufficient Material	Material too coarse fo	or standard method	
TP05	0.40-0.75	В	Atterberg Limits	Insufficient Material			
			PSD	Insufficient Material			
			Specific Gravity	Insufficient Material			Combine with TP06
			OMC/MDD	Insufficient Material	Material too coarse fo	or standard method	
TP06	0.60-0.90	В	Atterberg Limits	Insufficient Material			
			PSD	Insufficient Material			Combine with TP05
			Specific Gravity	Insufficient Material			combine with 1P05
			OMC/MDD	Insufficient Material	Material too coarse fo	or standard method	
Restrictio	on Identification	No.			Date of Issue		24/01/2020
Restrictio	n Raised by (init	ials):	AB		Checked/Sent by (initials):		DT 24/01/20

SOUTH WEST G	DUTH WEST GEOTECHNICAL			Sample Restriction Notification							
Jo	b			Carn Thomas		Job No.	12134				
Clie	nt			Wheal Jane		Client Job No.					
BH/TP/WS	Sample	Sample	Test Affected	Reason for Restriction	Technicians	Comments	Client Response				
TP01 and TP03		В	Atterberg Limits	Insufficient Material							
			PSD	Insufficient Material							
			Specific Gravity	Insufficient Material	Only enough material for Atterberg a	and PSD. PD and Omc not possible					
			OMC/MDD	Insufficient Material							
P05 and TP06		В	Atterberg Limits	Insufficient Material							
			PSD	Insufficient Material							
			Specific Gravity	Insufficient Material	 Only enough material for Atterberg a 	and PSD. PD and Omc not possible					
			OMC/MDD	Insufficient Material							
Restrictio	n Identification	No			Date of Issue		24/01/2020				
	Raised by (init		АВ		Checked/Sent by (initials):		DT 24/1/20				

APPENDIX D

Chemical Laboratory Results

Bryony Halliday Wheal Jane Services Old Mine Offices Wheal Jane Baldhu Truro Cornwall TR3 6EE

t: 01872 560200

f: 01872 560826

e: bhalliday@wheal-jane.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 19-78000

Project / Site name:	Carn Thomas	Samples received on:	16/12/2019
Your job number:	19937A	Samples instructed on:	17/12/2019
Your order number:	19937A	Analysis completed by:	02/01/2020
Report Issue Number:	1	Report issued on:	02/01/2020
Samples Analysed:	9 soil samples		

Signed: M. Crennins icu

Agnieszka Czerwińska

Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Iss No 19-78000-1 Carn Thomas 19937A

Project / Site name: Carn Thomas

Your Order No: 19937A

Lab Sample Number				1395123	1395124	1395125	1395126	1395127
Sample Reference				TP01	TP02	TP02	TP03	TP04
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.20	0.10	0.30	0.40	0.90
Date Sampled				10/12/2019	10/12/2019	10/12/2019	10/12/2019	10/12/2019
Time Taken	r	-		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	40	22	< 0.1	59	< 0.1
Moisture Content	%	N/A	NONE	8.7	7.2	9.0	8.0	9.5
Total mass of sample received	kg	0.001	NONE	1.4	1.2	1.2	1.2	1.3
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics pH - Automated	pH Units	N/A	MCERTS	12.2	11.1	10.8	8.5	9.8
Total Cyanide	mg/kg	1 N/A	MCERTS	< 1	< 1	< 1	< 1	9.8 < 1
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Sulphate as SO ₄	mg/kg	50	MCERTS	4100	3500	2800	640	2000
Water Soluble Sulphate as SO ₄ 16hr extraction (2:1)	mg/kg	2.5	MCERTS	24	730	900	360	690
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.012	0.36	0.45	0.18	0.34
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	11.8	364	448	179	343
Sulphide	mg/kg	1	MCERTS	< 1.0	1.0	< 1.0	< 1.0	< 1.0
Organic Matter	%	0.1	MCERTS	1.4	0.6	1.2	1.5	0.5
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	0.29
Pyrene Renze(a)anthracene	mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	0.23 < 0.05
Benzo(a)anthracene Chrysene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	7.2	17	13	12	13
Boron (water soluble)	mg/kg	0.2	MCERTS	0.5	1.9	2.5	0.5	0.7
Cadmium (aqua regia extractable)	mg/kg	0.2 4	MCERTS	< 0.2	< 0.2 < 4.0	< 0.2	0.2	< 0.2
Chromium (hexavalent) Chromium (aqua regia extractable)	mg/kg mg/kg	4	MCERTS MCERTS	< 4.0 13	< 4.0 7.8	< 4.0 8.9	< 4.0 7.4	< 4.0 10
Copper (aqua regia extractable)	mg/kg	1	MCERTS	19	21	21	19	37
Lead (aqua regia extractable)	mg/kg	1	MCERTS	17	120	37	54	37
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	9.2	6.3	6.4	5.2	5.9
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	32	39	67	240	65
Petroleum Hydrocarbons								
ТРН С10 - С40	mg/kg	10	MCERTS	71	< 10	43	< 10	130
	<u>e</u>							

Iss No 19-78000-1 Carn Thomas 19937A

Project / Site name: Carn Thomas

Your Order No: 19937A

Lab Sample Number				1395128	1395129	1395130	1395131	
Sample Reference				TP05	TP06	TP07	TP08	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				0.50	0.70	0.25	0.20	
Date Sampled				10/12/2019	10/12/2019	10/12/2019	10/12/2019	
Time Taken	7			None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Moisture Content	%	N/A	NONE	11	12	11	9.2	
Total mass of sample received	kg	0.001	NONE	1.6	1.2	1.2	1.5	
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	
· · · ·								
General Inorganics		NI/A	MOEDTO	0.0	10.0	10.2	0.0	
pH - Automated Total Cyanide	pH Units mg/kg	N/A 1	MCERTS MCERTS	9.6 < 1	10.0	10.3	8.8 < 1	
Free Cyanide	mg/kg mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	
Total Sulphate as SO ₄	mg/kg	50	MCERTS	3300	4200	3300	660	
Water Soluble Sulphate as SO ₄ 16hr extraction (2:1) Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	2.5	MCERTS	1100	950	920	110	
Equivalent) Water Soluble SO4 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	0.53	0.48	0.46	0.056	
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	530	476	461	55.9	
Sulphide	mg/kg	1.25	MCERTS	< 1.0	1.4	1.0	2.2	
Organic Matter	//////////////////////////////////////	0.1	MCERTS	0.9	0.9	1.7	2.4	
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Speciated PAHs				1		1		
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Acenaphthylene Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	
Acenaphthene Fluorene	mg/kg mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05	
Phenanthrene	mg/kg mg/kg	0.05	MCERTS	0.57	< 0.05	0.29	< 0.05	
Anthracene	mg/kg	0.05	MCERTS	0.20	< 0.05	< 0.05	< 0.05	
Fluoranthene	mg/kg	0.05	MCERTS	2.2	< 0.05	0.54	< 0.05	
Pyrene	mg/kg	0.05	MCERTS	1.9	< 0.05	0.46	< 0.05	
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.2	< 0.05	0.27	< 0.05	
Chrysene	mg/kg	0.05	MCERTS	1.3	< 0.05	0.31	< 0.05	
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	1.1	< 0.05	0.29	< 0.05	
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.68	< 0.05 < 0.05	0.18	< 0.05 < 0.05	
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg	0.05	MCERTS MCERTS	0.43	< 0.05	< 0.05	< 0.05	
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.51	< 0.05	< 0.05	< 0.05	
Total PAH Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	11.1	< 0.80	2.58	< 0.80	
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	26	19	11	11	
Boron (water soluble)	mg/kg	0.2	MCERTS	0.4	2.2	1.7	0.8	
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	0.2	< 0.2	< 0.2	
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	15	14	9.3	13	
Copper (aqua regia extractable)	mg/kg	1	MCERTS	26	34	17	8.1	
Lead (aqua regia extractable)	mg/kg	1	MCERTS	79 < 0.3	87 < 0.3	50	25	
Mercury (aqua regia extractable) Nickel (aqua regia extractable)	mg/kg mg/kg	0.3 1	MCERTS MCERTS	< 0.3 11	< 0.3 8.9	< 0.3 5.2	< 0.3 6.4	
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	78	56	53	53	
Petroleum Hydrocarbons	• ····3/ //y	• <u> </u>						
		10		150	05	22		
TPH C10 - C40	mg/kg	10	MCERTS	150	95	32	< 10	

Iss No 19-78000-1 Carn Thomas 19937A

Project / Site name: Carn Thomas

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1395123	TP01	None Supplied	0.20	Brown loam and sand with stones and vegetation.
1395124	TP02	None Supplied	0.10	Brown loam and sand with stones and vegetation.
1395125	TP02	None Supplied	0.30	Brown loam and sand with gravel and vegetation.
1395126	TP03	None Supplied	0.40	Brown loam and sand with stones and gravel
1395127	TP04	None Supplied	0.90	Brown clay and sand with gravel.
1395128	TP05	None Supplied	0.50	Brown clay and sand with gravel.
1395129	TP06	None Supplied	0.70	Brown clay and sand with rubble and gravel
1395130	TP07	None Supplied	0.25	Brown loam and sand with gravel and rubble.
1395131	TP08	None Supplied	0.20	Brown loam and sand with gravel.

Project / Site name: Carn Thomas

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture content, determined gravimetrically. (30 oC)	In-house method based on BS1377 Part 2, 1990, Classification tests	L019-UK/PL	W	NONE
Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	MCERTS
Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	BS1377 Part 3, 1990, Chemical and Electrochemical Tests""	L009-PL	D	MCERTS
Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Determination of thiocyanate in soil by extraction in water followed by acidification followed by addition of ferric nitrate followed by discrete analyser (spectrophotometer).	In-house method	L082-PL	D	NONE
Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS
Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	W	MCERTS
	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques. Determination of water soluble boron in soil by hot water extract followed by ICP-OES. Determination of free cyanide by distillation followed by colorimetry. Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry. Determination of metals in soil by aqua-regia digestion followed by ICP-OES. Moisture content, determined gravimetrically. (30 oC) Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry. Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate. Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards. Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight. Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode. Determination of frect straction ratio (soil equivalent). Determination of sulphide in soil by extraction in water followed by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode. Determination of fulceyanate in soil by extraction in water followed by acidification followed by acidification followed by addition of ferric nitrate followed by discrete analyser (spectrophotometer). Determination of total cyanide by distillation followed by colorimetry.	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staling techniques. In house method based on HSG 248 Determination of water soluble boron in soll by hot water extract followed by ICP-OES. In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar) Determination of hexavalent chromium in soll by extraction in water then by additication, addition of 1,5 diphenylcarbazide followed by colorimetry. In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar) Determination of metals in soil by aqua-regia digestion followed by ICP-OES. In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil. Moisture content, determined gravimetrically. (30 C) In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar) Determination of phenols in soil by extraction with inron (11) sulphate. In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar) Determination of phi in soil by addition of water relolwed by automated electrometric measurement. In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests: In-house method based on USEPA 8270 Determination of PAH compounds in soil by extraction in dichoromethane and hexane followed by GC-MS with the use of surrogate and internal standards. In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2010, Chemical and Electrochemical Tests, 2020, Chemical and Electrochemical Tests, 20	Analytical Method Description Analytical Method Reference number Abestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques. In house method based on HSG 248 A001-PL Determination of water soluble boron in soil by hot fullowed by colorimetry. In-house method based on Second Site Properties version 3 L038-PL Determination of free cyanide by distillation fullowed by colorimetry. In-house method based on Examination of fullowed by colorimetry. L080-PL Determination of metals in soil by aqua-regia digestion followed by ICP-OES. In-house method based on MEWAM 2006. L038-PL Determination of metals in soil by aqua-regia digestion followed by ICP-OES. In-house method based on MEWAM 2006. L039-PL Obsture content, determined gravimetrically. (30 colum hydroxide followed by distillation followed by colorimetry. In-house method based on BS1377 Part 3, 1090, Chassification tests L080-PL Determination of phenols in soil by extraction with th tron (11) subplate. In-house method based on BS1377 Part 3, 1099-PL L089-PL Determination of PH tompounds in soil by extraction in dichloromethane and hexane followed by colorimetry. In-house method based on BS1377 Part 3, 1099-PL L089-PL Determination of PH tompounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surgate and internal standards.	Analytical intertiod Description Analytical intertion Analytical intertion Analytical intertion Abbatts Identification with the use of polarised betwined conjunction with disperion staining techniques. In house method based on HSG 248 A001-Pt. D Determination of water soluble boron in sail by hit water extract followed by ICP-OES. In-house method based on Examination of followed by colorimetry. IO80-Pt. W Determination of free cyanide by distillation followed by colorimetry. In-house method IO80-Pt. W Determination of heavageert dromium in sail by extraction in weak method based on MEWAM 2006 followed by colorimetry. IO80-Pt. W Determination of metals in soil by aqua-regia disestion followed by ICP-OES. In-house method sola. IO80-Pt. W Mosture content, determined gravimetrically. (30) in-house method based on Examination of solar hydroxide followed by distillation followed by colorimetry. In-house method based on Examination of Water and Wastewater 20th Edificor: 0 (2) IO80-Pt. W Determination of phenols in soil by extraction with with non (13) subpate. In-house method based on Examination of Water and Wastewater 20th Edificor: 0 (2) IO80-Pt. W Determination of PH in soil by addition of water followed by automated detormetric measuremet. In-house method based on BS1377 Part 3, 1990, Chemical and Electroche

Iss No 19-78000-1 Carn Thomas 19937A

Project / Site name: Carn Thomas

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
----------------------	-------------------------------	-----------------------------	------------------	-----------------------	-------------------------

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
TP01		S	19-78000	1395123	С	Free cyanide in soil	L080-PL	С
TP01		S	19-78000	1395123	с	Total cyanide in soil	L080-PL	С
TP02		S	19-78000	1395124	с	Free cyanide in soil	L080-PL	С
TP02		S	19-78000	1395124	с	Total cyanide in soil	L080-PL	С
TP02		S	19-78000	1395125	с	Free cyanide in soil	L080-PL	С
TP02		S	19-78000	1395125	С	Total cyanide in soil	L080-PL	C
TP03		S	19-78000	1395126	с	Free cyanide in soil	L080-PL	С
TP03		S	19-78000	1395126	С	Total cyanide in soil	L080-PL	С
TP04		S	19-78000	1395127	С	Free cyanide in soil	L080-PL	С
TP04		S	19-78000	1395127	с	Total cyanide in soil	L080-PL	С
TP05		S	19-78000	1395128	С	Free cyanide in soil	L080-PL	С
TP05		S	19-78000	1395128	с	Total cyanide in soil	L080-PL	С
TP06		S	19-78000	1395129	с	Free cyanide in soil	L080-PL	С
TP06		S	19-78000	1395129	с	Total cyanide in soil	L080-PL	С
TP07		S	19-78000	1395130	С	Free cyanide in soil	L080-PL	С
TP07		S	19-78000	1395130	с	Total cyanide in soil	L080-PL	С
TP08		S	19-78000	1395131	С	Free cyanide in soil	L080-PL	С
TP08		S	19-78000	1395131	С	Total cyanide in soil	L080-PL	С

Bryony Halliday Wheal Jane Services Old Mine Offices Wheal Jane Baldhu Truro Cornwall TR3 6EE

t: 01872 560200

f: 01872 560826

e: bhalliday@wheal-jane.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 19-78001

Project / Site name:	Carn Thomas	Samples received on:	16/12/2019
Your job number:	19937A	Samples instructed on:	17/12/2019
Your order number:	19937A	Analysis completed by:	31/12/2019
Report Issue Number:	1	Report issued on:	31/12/2019
Samples Analysed:	2 10:1 WAC samples		

k. Lecudoe Signed:

Katarzyna Lewicka Head of Reporting Section

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :	 4 weeks from reporting 2 weeks from reporting 2 weeks from reporting 6 months from reporting
Excel copies of reports are only valid when accompanied by this PDF certificate.	1 5

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:	Results	19-1	78001					
					Climite			
					Client:	WHEAL		
Location		Carn	Thomas					
					Landfill	Waste Acceptane	e Criteria	
Lab Reference (Sample Number)		1395134	/ 1395135		Limits			
Sampling Date			2/2019			Stable Non- reactive		
Sample ID		T	P01		Inert Waste	HAZARDOUS	Hazardous	
Depth (m)		C).45		Landfill	waste in non- hazardous Landfill	Waste Landfill	
Solid Waste Analysis								
TOC (%)**	1.3				3%	5%	6%	
Loss on Ignition (%) **	3.5						10%	
BTEX (μg/kg) **	< 10				6000			
Sum of PCBs (mg/kg) **	< 0.007		-	-	1			
Mineral Oil (mg/kg)	< 10				500			
Total PAH (WAC-17) (mg/kg) pH (units)**	< 0.9 8.2				100			
						>6		
Acid Neutralisation Capacity (mol / kg)	11					To be evaluated	To be evaluate	
Eluate Analysis	10:1			10:1	Limit value	es for compliance le	eaching test	
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
Arsenic *	0.0084			0.0722	0.5	2	25	
Barium *	0.0065			0.0560	20	100	300	
Cadmium *	< 0.0001			< 0.0008	0.04	1	5	
Chromium *	0.0035			0.030	0.5	10	70	
Copper *	0.0050			0.043	2	50	100	
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2	
Molybdenum *	< 0.0004			< 0.0040	0.5	10	30	
Nickel *	< 0.0003			< 0.0030	0.4	10	40	
Lead *	0.0023			0.020	0.5	10	50	
Antimony *	< 0.0017			< 0.017	0.06	0.7	5	
Selenium *	< 0.0040			< 0.040	0.1	0.5	7	
Zinc *	0.0036			0.031	4	50	200	
Chloride *	2.6			22	800	4000	25000	
Fluoride	0.36			3.1	10	150	500	
Sulphate *	17			140	1000	20000	50000	
TDS*	98			840 < 0.10	4000	60000	100000	
Phenol Index (Monohydric Phenols) * DOC	< 0.010			131	1 500	- 800	- 1000	
Leach Test Information				1				
Stone Content (%)	< 0.1			1				
Sample Mass (kg)	1.0							
Dry Matter (%)	90				ļ	ļ		
Moisture (%)	10							
Results are expressed on a dry weight basis, after correction for mois	ture content where	applicable.	1	1	*= UKAS accredite	ed (liquid eluate ana	lysis only)	
Stated limits are for guidance only and i2 cannot be held responsible			idation		** = MCERTS accr		,	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		19-78001					
				Client:			
				Client:	WHEAL		
Location		Carn Thomas					
Lab Reference (Sample Number)				Landfill Waste Acceptance Criteria			
Lab Reference (Sample Number)		1395136 / 1395137			Limits		
Sampling Date		10/12/2019			Stable Non- reactive		
Sample ID		TP02		Inert Waste	HAZARDOUS	Hazardous Waste Landfill	
Depth (m)		0.30		Landfill	waste in non- hazardous Landfill		
Solid Waste Analysis							
TOC (%)**	0.6			3%	5%	6%	
Loss on Ignition (%) **	2.6					10%	
BTEX (µg/kg) **	< 10			6000			
Sum of PCBs (mg/kg) **	< 0.007			1			
Mineral Oil (mg/kg)	< 10			500			
Total PAH (WAC-17) (mg/kg) pH (units)**	< 0.9 9.5			100	>6		
Acid Neutralisation Capacity (mol / kg)	18				To be evaluated	To be evaluate	
Eluate Analysis	10:1		10:1	Limit value	es for compliance le	eaching test	
	10.1		10.1	using BS EN	12457-2 at L/S 10) l/ka (ma/ka)	
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l		mg/kg				
Arsenic *	0.0043		0.0376	0.5	2	25	
Barium *	0.0102		0.0902	20	100	300	
Cadmium *	< 0.0001		< 0.0008	0.04	100	5	
Chromium *	0.0042		0.037	0.5	10	70	
Copper *	0.016		0.14	2	50	100	
Mercury *	< 0.0005		< 0.0050	0.01	0.2	2	
Molybdenum *	< 0.0004		< 0.0040	0.5	10	30	
Nickel *	0.0003		0.0031	0.4	10	40	
Lead *	0.0033		0.029	0.5	10	50	
Antimony *	< 0.0017		< 0.017	0.06	0.7	5	
Selenium *	< 0.0040		< 0.040	0.1	0.5	7	
Zinc *	0.0098		0.086	4	50	200	
Chloride *	2.6		23	800	4000	25000	
Fluoride	0.13		1.1	10	150	500	
Sulphate *	62		550	1000	20000	50000	
TDS*	200		1700	4000	60000	100000	
Phenol Index (Monhydric Phenols) *	< 0.010		< 0.10	1	-	-	
DOC	13.4		118	500	800	1000	
Leach Test Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	1.2			1	1	1	
Dry Matter (%)	91				1		
Moisture (%)	9.0						
						<u> </u>	
				* 11/400		hurin anh N	
Results are expressed on a dry weight basis, after correction for mois	sture content where a	ppiicable.		~= UKAS accredite	ed (liquid eluate ana	iiysis oniy)	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Project / Site name: Carn Thomas

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1395134	TP01	None Supplied	0.45	Brown clay and sand with gravel and vegetation.
1395136	TP02	None Supplied	0.30	Brown loam and sand with gravel and vegetation.

Project / Site name: Carn Thomas

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance""	L046-PL	W	NONE
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	w	NONE
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	w	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	w	ISO 17025
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L047-PL	D	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	w	ISO 17025
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In-house method based on BS1377 Part 2, 1990, Classification tests	L019-UK/PL	w	NONE
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	w	MCERTS
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270. MCERTS accredited except Coronene.	L064-PL	D	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	w	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	w	NONE

Iss No 19-78001-1 Carn Thomas 19937A

Project / Site name: Carn Thomas

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests"	L009-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

